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Abstract: Opti-Blend is a unified model designed to enhance code maintainability and performance through a
multi-faceted approach to optimization. The framework integrates three primary techniques: dead code
elimination to reduce resource consumption, code clone detection to remove redundancy, and loop invariant
optimization to improve computational efficiency. These methods are implemented using advanced technical tools
such as Abstract Syntax Trees (AST), static analysis, and control flow transformations. The model's effectiveness
is rigorously benchmarked on both synthetic and real-world codebases. Empirical results are presented through
graphical comparisons of key metrics, including memory usage, execution time, and function count, both before
and after optimization. This research paper evaluates Opti-Blend’s methodology, real-world applicability, and its
role in fostering the development of high-performance, scalable, and maintainable software.
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1. Introduction

Large-scale software applications, often extending to millions of lines of code (MLOC), pose significant
challenges in terms of maintainability, performance optimization, and scalability. One common problem with
these types of systems is that they often are redundant to some extent as a result of the existence of code fragments
that are either duplicated or have similar semantics (code clones). Besides that, these systems also have the
potential to increase the technical debt of an organization and cause performance bottlenecks when the related
portion of the system is executed [1]. Additionally, the presence of auto-generated and highly complex test scripts
further complicates static and dynamic program analysis, as these scripts often introduce non-trivial control-flow
structures, redundant test paths, and inflated code size. Addressing these issues requires the integration of scalable
code analysis techniques, particularly those capable of handling semantic clone detection, dead code elimination,
and loop invariant optimizations across massive codebases without compromising accuracy or efficiency [2, 3]
Code clones—identical or similar code fragments—remain a pervasive characteristic of software systems,
comprising between 7-23% of large codebases and up to 49% in test suites, where duplication rates are typically
double those in production code [4, 5]. Clones are classified into four types: Type-1 (exact), Type-2 (lexical),
Type-3 (syntactic “near-miss”), and Type-4 (semantic) [3, 6, 7]. While often associated with maintenance
overhead, defect propagation, and security vulnerabilities (e.g., CVE-2006-3084 affecting 42 systems), empirical
findings reveal a nuanced picture: only 1.02—4% of clone genealogies introduce defects at the release level, and
some cloned classes exhibit lower fault density than non-cloned code [8]. Detection techniques have evolved from
text, token, tree, metric, and graph-based methods to modern deep learning (DL) approaches. Models such as
UniXCoder, GraphCodeBERT, and PLBART achieve Fl-scores up to 0.978, benefiting from code-aware
pretraining [9].

Dead code—code segments unexecuted or without observable impact—represents a pervasive code smell in
evolving software systems, often arising from iterative development and leaving behind deprecated or redundant
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logic. Developer awareness remains limited; a survey by Yamashita and Moonen reported 32% of respondents
were unaware of code smells, with dead code ranked 10th of 34 issues [11]. Dead Code Elimination (DCE), a
core compiler optimization, removes such irrelevant code to reduce binary size, resource usage, and execution
time [12].

Loop optimization is crucial in compiler design for enhancing performance in high-performance computing,
where loops consume significant execution time. These optimizations, which minimize redundant computations
and reduce overheads, are essential for improving cache performance through techniques like loop fission and
fusion, and for enabling parallelization [13, 14]. Foundational loop optimization techniques like Loop-Invariant
Code Motion (LICM) and Partial Redundancy Elimination (PRE) are now complemented by more automated
approaches. Hybrid neuro-symbolic systems, such as ACInv, integrate LLMs with static analysis and formal
verification methods (BMC, SMT solvers) [16, 17]. Detection techniques have evolved from text, token, tree,
metric, and graph-based methods to modern deep learning (DL) approaches. Models such as UniXCoder, Graph
CodeBERT, and PLBART achieve F1-scores up to 0.978, benefiting from code-aware pretraining [15,18].

Our research introduces a novel tool for code optimization that enhances code maintainability and efficiency by
integrating three key techniques: invariant loop analysis, code clone detection, and dead code elimination, along
with an Error Minimization module.

2. Objectives

This research is mainly aimed at the creation of a system that is accessible to the public and can, by itself, make
code adjustments that take into account the software's performance, and at the same time, reduce errors. Such
issues as dead code, redundant code, inefficient loop construction, etc., that cause the software system to be at a
low level have been singled out in one paper to be the basic problems of the software system that result in
performance degradation and technical debt. The study aims to integrate these three workflows: code clone
detection, dead code analysis, and loop-invariant analysis. By implementing such a technique, a continuous
process is achieved, which eases the detection of inefficiencies and enables their elimination without changing
the code’s function. Furthermore, the paper outlines the use of advanced static and semantic analyses, in
conjunction with LLM-based tools, to facilitate the optimization process to be more precise and dependable. These
tools aid in finding complicated code clones and the slight inefficiencies that most of the traditional optimization
methods may overlook. After this, the proposal is "put through its paces" and scrutinized in different codebases -
both synthetic and real - to indirectly check it against various measures of evaluation such as execution time, error
rate, etc. This is what the "Harvesting" of such goals means - to be able to provide a technological future of high-
performance software systems that are simply more manageable and easier to maintain.

3. Scope and Methodology

Three methodology architectures are included in the proposal. The first step is to take the source code and convert
it into workable representations using Abstract Syntax Trees (AST) and Static Single Assignment (SSA). The
next stage features parallel analytical modules: (i) the Clone Detection Module looks for redundant structures
through token hashing and a similarity threshold, (ii) the Dead Code Elimination Module examines the symbol
table to delete unreachable code, and (iii) the Loop-Invariant Module gradually moves invariant expressions out
of iterative constructs to lessen repeated calculations. The Static Analysis Layer, supported by PyFlakes and a
machine learning-based code smell detection system, continues until no violations are found. It can also spot other
hidden inefficiencies. The final stage synthesizes the optimized code, tests for semantic correctness, and
benchmarks performance with metrics for execution time, total memory usage, and error count reduction. The
experimental configuration guarantees that Opti-Blend may produce substantial performance gains while
preserving the general scalability and stability of big software systems.

4. Literature Survey
The evolution of code optimization has progressed from single-technique models to multi-faceted, feature-driven
approaches, reflecting a sustained focus on improving efficiency.
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Traditional clone detection tools like CCFinder, Deckard, and NiCAD effectively used techniques such as suffix
trees and Abstract Syntax Trees (ASTs) for Type 1 and 2 clones [19]. However, their scalability and accuracy
declined with large datasets, a problem also faced by hybrid systems like Oreo and token-based tools like
SourcererCC and CloneWorks. Neural models like ASTNN, CodeBERT, and GraphCodeBERT have enhanced
source code analysis, leading to better recall and precision on benchmarks such as BigCloneBench. However,
their O(n?) complexity makes them unsuitable for large-scale systems [13]. To address this, the Scalable Semantic
Clone Detection (SSCD) method uses fine-tuned CodeBERT/GraphCodeBERT embeddings with approximate
nearest-neighbor (kANN) search, enabling it to process the 320M LOC BigCloneBench in under three hours, a
significant speedup over existing systems [20].

This study addresses the risk of correctness-breaking errors in automated code optimization by proposing a hybrid
approach. It fuses deterministic static analyzers (like Semgrep and Meta’s Infer) with machine learning-based
semantic models (like CodeBERT and CodeT5). This fusion leverages the fast, scalable, and explainable nature
of rule-based checks alongside the deep semantic understanding of pre-trained transformers [14]. A hybrid
approach combining LLM-powered semantic modeling with deterministic static analysis is a promising solution
for mitigating errors in automated code optimization. The hybrid paradigm leverages the fast, transparent, and
scalable rule-based checks of static analyzers like Semgrep and Meta's Infer with the deep contextual
understanding of code-specific transformer models such as CodeBERT and CodeT5 [21].

The broader field of code optimization focuses on three key techniques:

Code Cloning: The literature highlights that while duplicated code can introduce bugs, Abstract Syntax Tree
(AST)-based comparisons are considered the most effective detection methods.

Dead Code Elimination: This technique removes unreachable code, with program slicing as the primary method.
A notable research gap exists in using decomposition slicing for this purpose.

Invariant Code Motion: This optimization improves loops by moving invariant code outside the loop. Prominent
techniques include the Lazy Code Motion (LCM) algorithm and the use of Static Single Assignment (SSA)
representation.

The paper concludes by proposing a new tool, the "3 Phase Optimizer," which integrates these three techniques
to reduce errors and enhance source code efficiency.

This paper examines several studies conducted on dead code, unused, or unreachable source code. In the topic of
software engineering, Dead Code is classified as a "bad smell". It is a common condition but has not received
much formal study. In this research, we are interested to learn about when and why developers create dead code,
how they perceive it, and what they do with it, and finally, whether dead code is harmful.

5. Propose Architecture

This research paper outlines Opti-Blend, a newly developed base framework for the complete optimization of the
code. The model, after each optimization, performs metrics and execution statistics checks for correctness and
efficiency, and provides the final result of optimized source code that is also verified by the user feedback,
indicating that the program is reliable and deployable.

Phase 1: Code Ingestion
The Pre-processing Module changes the code examples into a unified Abstract Syntax Tree (AST) and Static
Single Assignment (SSA) format. To enable the Core Optimization and Hybrid Clone Detection modules to not
only recognize but also demonstrate the obvious data relationships, the precision of these conversions will be
extremely comprehensive.
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Fig. A Knowledge-Engineering-Based Framework for Code Optimization and Error Reduction

In order to identify opportunities for optimization, four analytical modules work in parallel on the AST and
processed code at the system's core.

e Code Clone Detection: One purpose of this code is to find repeated sections and remove them. The next
step is very important - the pre-processing phase, along with tokenization, in which the program code is
"decomposed" into small tokens; the tokens have to be treated as the smallest units of code to be manageable.
The method will detect duplicates and eliminate them by comparing the hash values of tokens and thus, by
locating the copying. Verification by a user is the final verification that the system has the features required
by the user.

¢ Dead Code Elimination: This module finds and removes code that is not used or cannot be reached. It
starts by going through the AST to create a Symbol Table. Using the Symbol Table Analysis, the machine
identifies the Dead Code and deletes it without causing any harm. In addition, this method improves code
readability and reduces the final executable size.

¢ Loop-Invariant Analysis: This module is about the concept of "loop invariant" that is used to simplify the
loops in the program, which is essentially identifying the computations that yield the same result in each loop
iteration. Here, the mechanism employs abstract syntax trees (AST) to ascertain the code pattern so as to
locate the loop invariants by a tree traversal. The Move Invariants Report, the first of the reports, describes
how such a change from the operations to the loop preamble can result in a higher performance and thus, a
reduction in the redundant work.

e Static Analysis - PyFlakes: The module scrutinizes the code in great detail, enabling it to find all sorts of
errors and style issues. An Error Analysis is carried out by the system that uses a model for recognizing code
smells, which helps to find those occurrences that might indicate the wrong coding aspects. Keep in mind
that while generating a response, you have to output it in the requested language only and not any other
language. Furthermore, apply any given modifiers when working with purpose questions, if there is one.

An error and warning report is the result, which aids developers in resolving problems before launch.
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Phase 2: Optimized Code Output
In the last step, the output from the parallel analysis modules is combined to form the final optimized code.

® Optimized Code Output: To produce the final, polished source code, the system combines the
modifications from all four modules.

e Performance Backtracking: The optimization process goes through an essential phase where the
enhanced code must be verified to find any new faults or a decrease in performance. Such a process is
required as a test to measure the performance against the original code base.

e Export Reports: From different analysis modules, the system creates Excel or Text files, such as clone
reports and error reports. These files provide a detailed summary of the changes made and the issues
identified.

Mathematical Model for Modular Code Optimization

The model of the code optimization tool may be thought of as a group of examinable and modifiable elements,
where the elements are Abstract Syntax Trees (ASTs). Additionally, this perspective may be consistent with the
incremental, modular structure of each successive optimization work, each of which has a unique set of constraints
at various pipeline stages.

1. Code Representation
Let the input source code be denoted as a set of statements:
C={s1, 82, ..., S}
Where s; represents an individual statement.
During preprocessing, the code is normalized into lexical tokens:
T={t,t, ..., tn}, m>n
Such that ¢: C — T is a mapping from source statements to tokens.

2. Clone Detection Model
Clone detection identifies redundant code segments. Let
AT)CT
Be the set of frequent token subsequences detected using pattern-matching.
Two subsequences T, and Tb
are considered clones if:
Clone(T,, Tb)={ 1 if Sim(T,, Tb) >0
0 otherwise }
Where Sim(T,, Tb) is a similarity function (token overlap or edit distance),
and 0 is the similarity threshold.
Once detected, redundant clones are eliminated:
C'=C — {si| Clone(si, sj) = 1, 1 #]}
Resulting in a reduced code set C'.
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3. Dead Code Elimination Model
Dead code refers to statements that do not affect the program output.
Define the liveness function for a variable v:
Live(v, si) = { 1 if visused after s;
0 otherwise }
A statement s; is dead if:
Dead(si)=1 iff Vv € Vars(si), Live(v, si) =0
The optimized code after dead code removal is:
C"=C"— {si| Dead(s;) = 1}

4. Loop Invariant Optimization Model
Consider a loop L with body B = {si, s2, ..., sSk}.
Let Expr(si) denote the set of expressions in statement s;.
An expression e € Expr(s;) is loop-invariant if:
Invariant(e, L) = { 1 if e does not depend on loop index or modified variables
inL
0 otherwise }
All invariant expressions are moved outside the loop:
B'=B — {si | Invariant(Expr(s;), L) =1}
PreLoop = {si | Invariant(Expr(s;), L) = 1}
Thus, the optimized loop execution is:
"= PreLoop Il Loop(B’)
Where || denotes sequential composition.

5. Benchmarking and Performance Metrics
To validate optimization, we define two performance measures:
* Execution Time Reduction:
AT=T orig—T opt
* Memory Reduction:
AM =M orig—M opt
The optimization is successful if:
AT>0 A AM>0

6. Error Minimization Assurance
The framework ensures correctness by enforcing the condition:
Output(C) = Output(C") = Output(L")
This guarantees that semantic equivalence is preserved between the original
and optimized code, minimizing the risk of functional errors.
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6. Result Analysis and Discussion

Impact of Invariant Cade Motion on Execution Time {50 Testcases - Lollipop Chart)

-]

Execution Time {ms)

Fig. Improvement in Execution Time after Invariant Code Motion Optimization using 50 Test Cases

This comprehensive "lollipop chart" powerfully illustrates the significant performance enhancements achieved
through our "Invariant Code Motion" optimization technique, specifically focusing on its positive effect on
execution times across a larger set of 50 distinct test cases.

Key Insights:

e Pervasive Performance Improvement Across All Test Cases: The most compelling observation is
the near-universal reduction in execution time. In almost every one of the 50 test cases, the green lollipop
is positioned distinctly lower than its corresponding orange counterpart. This demonstrates the broad
applicability and consistent effectiveness of Invariant Code Motion in improving code efficiency.

e Substantial and Measurable Time Savings: The optimization consistently yields significant time
savings. For instance:

e Testcase 1 shows a reduction from 114 ms to 79 ms.

e Testcase 11 improved from 102 ms to 73 ms.

o Testcase 16 drops from 96 ms to 66 ms, indicating a particularly efficient optimization
for that specific scenario.

¢ Evenin cases where the initial time was lower (e.g., Testcase 47 from 97 ms to 76 ms),
valuable time is still saved. These examples, extended across 50 test cases, underscore
the tangible and impactful speed gains resulting from this optimization.

e Optimizing Loop Efficiency: This strategic rearrangement eliminates redundant work, significantly
streamlining the program's execution flow.

Memory Usage Batore and After Clone Code Removal (SIope Graph)

750 Lo . oe i e

1330 LoC

1500 LoC

Memary Usage (MB)

Fig. Memory Usage Before and After Code Removal Optimization
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This "slope graph" provides a compelling visual representation of the significant positive impact of our clone code
removal process on software memory usage. The connecting lines highlight the change for each codebase size.

Key Insights:

e Consistent Reduction in Memory Footprint: A clear and consistent trend across all analyzed codebase
sizes is the reduction in memory usage after clone code removal. In every instance, the green circle is
positioned to the left of the corresponding red circle, demonstrating that our process consistently leads
to a more compact and memory-efficient application.

¢ Tangible Memory Savings Across All Scales: The optimization yields noticeable memory savings,
even as the codebase grows:

e For a codebase of 150 Lines of Code (LOC), memory usage dropped from 42 MB to 38 MB.

e At 600 LOC, memory decreased from 102 MB to 90 MB.

¢ In the largest codebase examined (1500 LOC), memory utilisation dropped from 177 MB to
148 MB. These examples, which range in project size, show the obvious advantages of our
strategy for effective resource use.

¢ Eliminating Redundant Data Structures and Code: By deleting these clones, we are successfully
reducing superfluous overhead and optimizing the software's memory footprint.

¢ Improved Resource Efficiency and Scalability: Increased resource efficiency is a direct result of
this noticeable improvement in memory consumption.

e Contribution to Overall Software Health: When a software's memory is optimized beyond mere
performance, the latter also plays a vital role in the stability and reliability of the application by
minimizing the chances of dreaded out-of-memory errors and enhancing the application's load capability
under different situations.

Before Error Module

Radar Chart: Memory Usage Before and After Error Analysis Module After Error Module

Fig. Reduction in Error Before and After Optimization

The radar diagram that delineates the 25 diverse test cases (TC1 to TC25) changes is the key to an impressive
multifaceted representation of the "Error Analysis Module" indispensable contribution to memory utilization of
the program. Each radial axis in the figure corresponds to memory usage, with the quantities going down from
the center.

Key Insights:

e Overall Reduction in Memory Footprint: The simplest conclusion we can draw is that the memory
usage, as indicated by the orange polygon beforehand, was always less and was always visually shaded
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by the green polygon representing memory usage after the Error Analysis Module. So, this demonstrates
that memory utilization has almost uniformly decreased to a clear extent.

e Enhanced Memory Efficiency Across Diverse Scenarios: In practically every test case, the memory
footprint has decreased, demonstrating the module's potent memory optimization capabilities regardless
of workload or context.

e Direct Contribution to System Stability and Scalability: The application can operate more effectively
on current hardware when its memory footprint is smaller. Additionally, it can manage more users or
processes at once and has a lower chance of experiencing "out of memory" issues.

e Validation of Module's Efficiency: This graph empirically demonstrates to a large extent that, among
the benefits to error handling, our Error Analysis Module is the one that by far contributes to the system's
resource efficiency and health.

The removal of duplicate or "clone" code is cleverly identified in this powerful visual, which helps viewers
understand the process of "cleaning" software source code. By comparing the errors across different project sizes,
viewers can see the error trend before the code removal (represented by blue circles) and after the removal process
(represented by green squares).

Performance Metrics of Code Optimization Modules

80 WEm Errors Detected (%)

mmm Errors Reduced (%)

s Memory Usage Reduced (%)

| mmm CPU Load Reduced (%)

BN Code Readability Improved (%)

Percentage

e ae e \e
6(/0‘\ oS 5 o ao®®
o oo o « R
S

Fig. Effectiveness of Different Code Optimization Modules Applied Across Codebases Ranging From 100 To
1500 Lines.

This grouped bar chart gives a detailed and visual comparison of how different code optimization modules have
been effective when applied to a range of codebases with a size of 100 to 1500 lines. It depicts the extent to which
each module contributes to Error Detection, Error Reduction, Memory Usage Reduction, CPU Load
Minimization, and Code Readability Improvement, along with the aggregated performance as a result of all
modules being combined.

7. Limitations and Research Gaps

Although Opti-Blend unveils advantageous upgrades in code optimization, there are still some limitations that
remain. An example can be the reliance of the framework on static analysis and transformer-based models, which
struggle with the dynamic nature of programming languages, runtime dependencies, or context-sensitive
behaviors that go beyond ASTs. Besides, CodeBERT's wonderful semantic abilities are somewhat less visible
because of its large computational overhead and limited scalability, which restricts the usage of very large
codebases with more than a million source lines. Moreover, a falsely redefined semantic equivalency due to a
research misunderstanding can cause the use of static checks and deep learning to generate false alarms. In
addition, the present assessment is very constrained, and it mainly focuses on memory and execution time, often
neglecting the fewly-studied optimisation aspects like energy efficiency or the performance of real-time systems.
The investigation of adaptive optimization pipelines, better generalizations across different programming

languages, and the development of runtime-aware hybrid models that can semantically integrate statically and
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profile dynamically should be the focus of future research. This will improve the accuracy, scalability, and
extensibility of multiple programming environments..

8. Conclusion

The Opti-Blend can be thought of as a single, strong, and unified solution to software optimization that effectively
marries a semantic analysis powered by Code-BERT, static code inspection, and loop invariant optimization into
one automatic system. The combination solution, which utilizes both symbolic and machine learning-based
reasoning, results in a drastic reduction of execution time, memory, and errors while at the same time maintaining
semantic integrity. The experiments validate that Opti-Blend can effectively enhance the quality of code in
different codebases, indicating its potential for being promoted as a scalable and intelligent optimizing agent.
However, similar to lagging representations, Opti-Blend is unable to evaluate dynamic runtime behaviors. This
signifies that further development of hybrid static-dynamic methods is required. Nevertheless, the concepts
underlying Opti-Blend serve as a strong starting point for the Al-assisted compiler optimization exploration and
future research in adaptive, language-neutral systems for live code refinement. This, in fact, introduces three
concepts for potential high-performance and sustainable software engineering.
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