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Abstract:  This paper compares two main ways of managing inventory the traditional deterministic models and 

modern machine learning (ML)-based stochastic models. In deterministic models, demand is treated as fixed and 

known in advance. These models are simple, easy to use, and work well when demand changes very little. 

However, they often fail when real-life demand is uncertain or changes quickly. The ML-based stochastic models 

use data-driven methods to predict demand by learning from past trends, prices, seasons, and other factors. Instead 

of assuming one fixed demand value, they use probability and statistics to show how demand may vary. This helps 

companies make better decisions about how much to order and when to restock. The comparison shows that ML-

based models can adapt quickly, reduce total costs, and maintain better service levels. Deterministic models are 

still useful for stable markets, but ML-based stochastic models perform better in uncertain, fast-changing 

environments because they include learning, prediction, and real-time adjustment in inventory control. 
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I. Introduction  

Inventory management remains a vital component of supply chain efficiency, balancing production, storage, and 

demand variability. Deterministic models have historically been used to optimize inventory systems under stable 

and predictable conditions. For instance, Nand et al. (2021) emphasized deterministic approaches in analyzing 

inventory parameters and control mechanisms for cost minimization. Similarly, Benkherouf and Gilding (2021) 

proposed continuous-time deterministic models and hyper-generalized policies for supplier coordination. 

Extending this, Mareeswaran and Anandhi (2021) applied a multi-item deterministic EOQ model to agricultural 

materials, reducing post-harvest losses, while Mohapatra et al. (2021) integrated reverse supply chain concepts 

for sustainability in aluminum can recycling. 

However, real-world environments often involve uncertainty, leading to the development of stochastic and 

machine learning (ML)-based approaches. Antic et al. (2022) incorporated stochastic demand variability in 

pharmaceutical distribution, while Rojas et al. (2022) utilized hybrid ML-based multi-criteria models to link 

supply chain success factors with inventory cost efficiency. Alrasheedi et al. (2022) introduced stochastic queuing-

based deterioration models for service optimization, and Alkahtani (2022) developed quantitative outsourcing 

models enhancing decision-making under imperfect production. Collectively, these studies illustrate a paradigm 

shift from deterministic optimization toward stochastic and data-driven inventory modeling, integrating 

mathematical precision with adaptive intelligence to improve forecasting, decision-making, and overall supply 

chain performance. 
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II. Research Background 

Alkahtani et al. (2022) focused on the increasing issue of production firms regarding outsourcing in SCM, 

because of scarce skilled labour and technology. The research highlighted that, while outsourcing can decrease 

capital investment pressure, it would complicate inventory management and production scheduling due to 

additional inventories of both in-processes, especially the outsourced semifinished products for defined processes. 

The study proposed a mathematical model and optimization approach to the outsourcing decision with imperfect 

production and non-identical amounts of products. Real-life industrial data were employed to carry out numerical 

experiments in order to solve for the optimal production and outsourcing quantities that minimize total SCM cost. 

Sensitivity analysis demonstrated the importance of input parameters in total cost and could offer managerial 

references for decision-making. This study is meaningful in that it provides a quantative model by which managers 

can evaluate the economic feasibility of outsoucing processes to maintain efficiency of inventory and production 

systems, thus making an important contribution to SCM. 

Rojas et al. (2022) identified the key success factors for SCM, and discussed their significance with cost savings 

in inventories at pharmacies and food nutrition services (FNS), which is a neglected area of this research. 

Consideration of such relationships was addressed in the study by developing a new robust compromise (RoCo) 

multi-criteria model that embeds non-linear programming and time-dependent demand. This novel methodology 

enabled the development of a scoring system for assessing success factors in the context of supply chain, as well 

as impact on efficient inventory cost. The real dataset came from systems which have been monitoring the 

movement of product and cost, variables like purchasing organization, economies of scale and synchronized 

supply were measured on a Likert’s scale. The authors found cost saving and approval factor scores to be 

significantly related on multiple levels across the 79 FNS and pharmacy products. Endogeneity bias in the 

relationships was addressed by internal instruments and generalized statistical moments. Higher cost savings 

tended to be with less important factors for achieving supply chain success, showing the dual high-level interaction 

of both operational efficiency and strategic issues in inventory decision making. 

Nobil et al. (2022) studied the generalised model of the traditional Economic Production Quantity (EPQ) to cater 

for real-world production and inventory control in a multi-product, single-machine problem which involves 

imperfection in manufacturing. The research investigated the cases in which some of the manufactured items are 

defective and should be repaired or disposed, reflecting practical real-world industry environments. Furthermore, 

the resulting model included practical limitations like bounded warehouse space for each product and finite total 

available capital and can be used to optimize production planning in actual manufacturing systems with inherent 

resource constraints. It was also assumed that the set-up cost/time for each product depended on production 

quantity; a further complication. The authors also developed their objective function into a convex nonlinear 

programming problem (CNLPP) for better optimization. A heuristic procedure is proposed to solve this 

challenging problem and its performance is illustrated through a numerical example, which confirmed that the 

model could be used as an effective tool in fine-tuning short term production planning and inventory management 

activities under various operating and financing parameters. 

Antic et al. (2022) investigated an inventory control problem for a private pharmaceutical distribution company 

in Serbia with sales operations in nine surrounding countries organized within central supply chain system. To 

deal with the intricacy of such a configuration, the authors employed modern control theory and created a 

conceptual model that incorporated realistic limitations as well as the operational behavior of the company’s 

supply chain. They developed a dynamic discrete mathematical model for managing inventory of multiple drugs 

with variable lead times, along with both stOchastic and deterministic demand. Deterministic demand was 

described by means of a monthly sales forecast, and stochastic demand was treated as random deviations around 

the forecasts plus/minus 20%. The objective of this study was to increase the discrepancy between planned and 

actual average inventory levels, and decrease the supply deficit by tuning reorder quantities and delivery 
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schedules. Efficiency was compared, under a variety of conditions, for two ordering policies: Lot-for-Lot and 

Fixed Order Quantity. Validation of the model was performed using two years of historical data, which proved to 

surpass deficiencies associated with existing distribution requirement planning system and to provide a practical 

and flexible approach for achieving better inventory control in pharmaceutical supply chains. 

Benkherouf et al. (2022) solved a classic problem in inventory theory finding the optimal lot size for total costs 

of stocking and holding to be minimized under a finite-horizon deterministic system. The work suggested a general 

model which could subsume several well-known models like lot-size, batching, repair and recovery models under 

one analytic structure. They put constraints on legal control policies in the form of a partition of a closed interval 

of real numbers, and then formulated the problem as a mixed-integer nonlinear programming (MINLP) model. 

They showed that the MINLP has an optimal solution under mild conditions, and observed that submodular 

function on a lattice theory is critical to handle the integer variable part. This model-based framework also allowed 

us to generalize and extend previous results on optimality of partition inter-leaving and convexity properties of 

the objective function. Furthermore, the model effectively addressed inventory models that were previously 

infeasible such as demand governed by general differential equation and inventory model with shortages and 

inflation widening the horizon of deterministic inventory optimization research. 

Alrasheedi et al. (2022) discussed the ways corporate firms could achieve maximum productivity and 

profitability that were faced with losses as a result of forgotten sales and poor customer services, if they maintained 

equal demand and supply. To do so, we balanced real-world integrative queuing-inventory systems including M1 

and M∞. In particular, fitting to practical requirement of the inventory control, the authors considered a non-

perfect deterioration model for an integrated production-inventory system (M/M/1/N–1) with finite planning time 

followed by random lost sales. The aim of this study is to evaluate the customer satisfaction via introducing a 

deterioration parameter (γ) into the model for demand being a Poisson process and both service and lead times 

having exponential distribution. The resulting approach was used in M/M/1/∞ and M/M/1/N–1 system examined 

earlier by Schwarz et al., solving the corresponding linear system obtained from steady-state balance equations, 

comparisons of these results with simulations from Schwarz method. After subjecting the model to different values 

of order quantity (Q), demand rate (λ) and deterioration rate (γ), it was observed that these parameters are highly 

inter-related, which is very useful to decision-makers in the optimization of system performance meeting 

organizational goals. 

Darmawan et al. (2022) examined some production constraints in the manufacturing firms which meet 

difficulties when the customers’ demand exceeds the production capacity (backlogging). In such circumstances, 

companies may have to find the products they need from external parties in order to secure local supply. The 

objective was to identify the best combination for in-house production and external procurement quantities in 

order to minimize total inventory cost. Therefore, researchers structure it as a make-with-buy model and were 

solved by branch and bound like exact solution software. The findings were used to illustrate the practicality and 

usefulness of this model in minimizing total inventory costs, M, which consists of maintenance, amended order 

cost, per setup ordering cost, and acquisition cost. The results validated the practical and efficient application of 

the proposed model for manufacturing companies to operate with limited production capacity while minimizing 

total system costs. 

Nand et al. (2021) talked about modern globalization, information technology advancement, and production 

machinery development that had increased competition in the industrial sectors. Causes for the competitive 

environment included limited investment, environmental gains, improved transportation, and communications. 

The report indicated that the growing requirements of the customer for customized products, short and constant 

lead times, as well as high satisfaction levels were contributing to the demand for supply chain management 

(SCM) and inventory control in businesses. In the past few decades, many theoretical methods were extensively 

introduced to cope with problems in these fields by the means of minimizing cost or maximizing gain. The scholars 
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stressed how SCM had become an important management tool to deal with rapid changes in customer demand in 

the context of globalised industrial networks. The research also further described that the supply chain theory 

covered everything from the stages - either directly or indirectly - to answer for customers’ needs, and aimed at 

making products be made available accurately, timely and effectively. Inventory theory and control were a key 

component of SCM, the report stated, which was also important factor in controlling materials from raw resources 

to final products within the overall supply chain system. 

Pando et al. (2021) has discussed an inventory model for a single commodity with demand rate that was stock 

dependent. The model considered three fixed inventory costs (ordering, purchasing, holding) and alternatively 

developed a fresh way to use for obtaining the optimal policy investment return Marshalling. It was proved that 

the maximum profitability results in minimizing the average inventory cost per unit, and the global optimum 

solution of the objective function was found, indicating that a zero-ending inventory policy at each cycle is 

optimal. They derived the closed-form solutions on lot-size and optimal profit, if either maximization of return-

on-investment (ROI) is targeted instead or to minimize the inventory cost per unit time but found a number of 

differences including that the respective zero order points were not consistent between them. With this, they claim 

that the best lot size under the MROCPP is invariant against cost of purchase and selling price fluctuation. 

Sensitivity analysis through partial derivative has further demonstrated that the maximum ROI is highly sensitive 

to the price of selling material and purchasing cost in comparison with other parameters. Finally, some numerical 

examples were proposed to verify the results and also give managerial insight on inventory control under the 

retailing environment. 

Benkherouf and Gilding (2021) concentrated on finding the optimum inventory policy in that case of an infinite-

horizon deterministic continuous-time, continuous-state fundamental model under which the stock level follows 

a differential equation when no ordering their apex is issued. The decision-maker was able to purchase from 

several suppliers, with different ordering and purchasing costs and his goal was to minimize the discounted total 

cost over an infinite planning horizon. The problem formulated here has the optimal policy at its equilibrium as 

the solution of some quasi-variational inequality whose solvability would lead to one of three possible cases; an 

existence and uniqueness of a policy solution or a generalised solution that holds under similar space conditions 

or inexistence such solutions. The authors established sufficient and necessary conditions for each of these cases, 

and used examples to demonstrate when they would occur that provided useful insights into the coordination 

problem of the optimal supplier selection and order sizing in a significantly complicated inventory model. 

Mareeswaran et al. (2021) stressed on the importance of efficient inventory control in farm materials to reduce 

post-harvest losses due to storage. The analysis used Multi-Item Deterministic Model for EOQ which is tabulated 

for short, medium and long grain varieties of rice which are the main grains in India. The EOQ for each rice 

product was based on processing costs, and holding costs in milling industries. The research sought to alleviate 

storage problems and minimize post-harvest losses, thus improving operational efficiency and effectiveness in 

agricultural stocks management. 

Benkherouf et al. (2021) considered a deterministic inventory model of continuous time and state, in which the 

stock level changed according to a differential equation if without controls. The stock was being observed 

continuously and could be replaced at any time with the decision maker having to choose between several 

suppliers who assumed different costs of ordering and purchasing. The problem of minimizing the overall 

inventory cost over an infinite planning horizon was addressed in the research by formulating it as a QVI. The 

QVI was shown to have a special solution that corresponded to the generalized policy under certain attractive 

conditions established earlier by the authors. In an alternative setting, a new optimal control policy, called hyper-

generalized policy was found and theoretical justification provided. 
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Mohapatra et al. (2021) developed a novel model for the production of 250 ml aluminium refreshment cans, 

recycling and reusing. They considered also that collated cans were distributed to untainted (non-tainted) cans 

that are recycled or reprocessed in the primary aluminium through mixing it with primary aluminium for new can 

production, and tainted one that is sold as low-quality aluminium-use including design by vendors or exported, 

and scraping. The article used numerical analysis to examine policies that can lead to smaller total inventory costs 

and fewer cans sent off to the scrap yards. The findings indicated that the amount of collected cans had the greatest 

effect upon the total system cost per unit time, demonstrating again how the effectiveness of collection and 

recycling with regards to sustainability within inventory control is paramount. 

III. Finding From the Literatures 

Author(s) & 

Year 

Model Type / 

Focus 

Key Methods or 

Techniques Used 

Key Findings / 

Contributions 

Managerial or 

Practical 

Implications 

Alkahtani 

(2022) 

Deterministic–

Optimization for 

SCM Outsourcing 

Nonlinear 

mathematical model 

using real industrial 

data; sensitivity 

analysis 

Optimized 

outsourcing and 

production quantities 

under imperfect 

conditions 

Helps firms balance 

outsourcing cost 

with production 

efficiency 

Rojas et al. 

(2022) 

ML-Based 

Stochastic Multi-

Criteria SCM 

Robust Compromise 

(RoCo) hybrid model 

integrating nonlinear 

programming with 

time-dependent 

demand 

Linked inventory 

cost savings with 

SCM success factors 

using real FNS and 

pharmacy data 

Provides a data-

driven framework to 

identify success 

factors and cost 

efficiency 

Nobil et al. 

(2022) 

Deterministic–

Generalized EPQ 

for Multi-Product 

Systems 

Convex Nonlinear 

Programming; 

Heuristic 

optimization 

Modeled imperfect 

production with 

setup cost/time 

dependency and 

warehouse 

constraints 

Aids manufacturing 

firms in realistic 

short-term 

production planning 

Antic et al. 

(2022) 

Stochastic & 

Deterministic 

Dynamic Model 

Discrete 

mathematical control 

model; Lot-for-Lot 

vs. Fixed Order 

policies 

Incorporated variable 

lead times and 

random demand 

variations 

Improved 

pharmaceutical 

inventory control 

with flexible policy 

adaptation 

Benkherouf & 

Gilding (2022) 

Deterministic–

Finite Horizon 

Optimization 

Mixed-Integer 

Nonlinear 

Programming 

(MINLP); 

Submodular function 

theory 

Unified lot-size, 

batching, and 

recovery models 

under one framework 

Extends 

deterministic 

models to include 

inflation and 

shortage effects 

Alrasheedi et 

al. (2022) 

Stochastic–

Queue-Based 

Deterioration 

Model 

M/M/1/∞ and 

M/M/1/N–1 queuing 

systems; nonlinear 

steady-state equations 

Integrated 

deterioration and 

lost-sales parameters 

for real-time 

inventory 

Supports service-

based firms in 

balancing demand–

supply variability 
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Darmawan et 

al. (2022) 

Deterministic–

Make-or-Buy 

Model 

Branch-and-Bound 

optimization; capacity 

constraints 

Balanced internal 

production and 

external procurement 

under limited 

capacity 

Reduces total 

system cost and 

supports constrained 

manufacturing 

Nand et al. 

(2021) 

Conceptual–

Deterministic 

SCM Review 

Theoretical analysis 

of SCM & inventory 

evolution 

Discussed 

globalization, 

technology, and 

competition impacts 

on inventory theory 

Provided strategic 

insights for SCM 

adaptability in 

global markets 

Pando et al. 

(2021) 

Deterministic–

Stock-Dependent 

ROI Model 

Closed-form 

solutions; sensitivity 

analysis 

Demonstrated zero-

ending inventory as 

optimal under ROI 

maximization 

Guides retail firms 

on balancing ROI 

and inventory costs 

Benkherouf & 

Gilding (2021) 

Deterministic–

Infinite Horizon 

Multi-Supplier 

Model 

Quasi-Variational 

Inequality (QVI) 

formulation 

Derived necessary 

conditions for 

optimal supplier 

policy 

Enables long-term 

multi-supplier 

coordination and 

cost minimization 

Mareeswaran 

& Anandhi 

(2021) 

Deterministic–

Multi-Item EOQ 

for Agriculture 

EOQ modeling across 

grain types; cost 

minimization 

Reduced post-

harvest losses and 

optimized rice 

milling inventory 

Supports 

agricultural 

efficiency and 

reduced wastage 

Benkherouf & 

Gilding (2021) 

Deterministic–

Hyper-

Generalized 

Policy 

QVI-based hyper-

generalized (s,S) 

model 

Provided generalized 

control policy for 

continuous systems 

Broadened scope of 

deterministic 

inventory theory 

applications 

Mohapatra et 

al. (2021) 

Deterministic–

Reverse Supply 

Chain Model 

Numerical simulation 

and recycling 

optimization 

Modeled can 

recycling for 

minimal cost and 

maximal reuse 

Encourages 

sustainable 

production and 

circular economy 

integration 

 

IV. Mathematical Model of Deterministic vs. ML-Based Stochastic 

Consider a discrete review horizon 𝑡 = 1, … , 𝑇 with nonnegative random demand 𝐷𝑡 , lead time 

𝐿 ∈ 𝑍 ≥ 0, and per-unit holding, shortage (backorder), and purchasing costs ℎ,  𝑝,  𝑐, respectively; a fixed ordering 

cost 𝐾 may apply when an order is placed. 

Let 𝑞𝑡 ≥ 0 be the order quantity at time 𝑡, 𝐼𝑡 the on-hand inventory at the start of 𝑡, and 𝐵𝑡  backorders (if allowed). 

The inventory balance with lead time is 

𝐼𝑡+1 = 𝐼𝑡 − 𝐷𝑡 + 𝑅𝑡 , 𝑅𝑡 = {
𝑞𝑡 − 𝐿, 𝑡 > 𝐿

0,                𝑡 ≤ 𝐿 
, with 𝐵𝑡 = 𝑚𝑎𝑥{0, 𝐷𝑡 − 𝐼𝑡} for backordered demand and the usual 

nonnegativity conventions. The per-period cost is 

𝐶𝑡 = 𝐾1{𝑞𝑡 > 0} + 𝑐𝑞𝑡 + ℎ(𝐼𝑡+1)+ + 𝑝(𝐼𝑡+1)−, where 𝑥+ = 𝑚𝑎𝑥{𝑥, 0} and 𝑥− = 𝑚𝑎𝑥{−𝑥, 0}. 
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In the deterministic model, uncertainty is collapsed to a point forecast 𝐷̂𝑡. Typical choices are the EOQ/static-

demand setting or a rolling myopic policy under time-varying forecasts. With 𝐿 = 0 and constant 𝐷̂, the EOQ 

solution minimizes 𝐾
𝜆

𝑄
+ 𝑐𝜆 +

ℎ

2
𝑄 (where 𝜆 = 𝐷̂ is the demand rate) to give 𝑄∗ = √2𝐾𝜆/ℎ and a reorder point 

𝑟 = 𝐷̂ ⋅ 𝐿 Under time-varying 𝐷̂𝑡, a base-stock policy sets the order-up-to level 𝑆𝑡 = ∑ 𝐷̂𝑡+𝑖
𝐿
𝑖=1   (plus optional 

safety stock tuned by a fixed buffer) and chooses 𝑞𝑡 = 𝑚𝑎𝑥{0, 𝑆𝑡 − 𝐼𝑡}. The optimization objective over the 

horizon is purely deterministic: 

𝑚𝑖𝑛
{𝑞𝑡}

 ∑ 𝐶𝑡|𝐷𝑡=𝐷̂𝑡

𝑇

𝑡=1

 

s.t. the inventory balance and 𝑞𝑡 ≥ 0. 

Service levels are enforced via hard constraints (e.g., no stockouts: 𝐼𝑡+1 ≥ 0) or by embedding a fixed safety stock 

𝑠 so that 𝑆𝑡 = ∑ 𝐷̂𝑡+𝑖 + 𝑠.𝐿
𝑖=0   

Because variability is ignored, the buffer is typically chosen by rules of thumb (e.g., multiples of 𝜎 estimated from 

residuals), not by an explicit probabilistic trade-off. 

In the ML-based stochastic model, demand is modeled as a predictive distribution  𝐷𝑡 ∣ ℱ𝑡 ∼ 𝕡𝜃(⋅; 𝑥𝑡)  delivered 

by an ML model (e.g., probabilistic gradient boosting, quantile regression, deep nets with distributional outputs, 

or Bayesian ensembles), where 𝑥𝑡 are features available at time ttt (prices, promotions, calendars, weather, macro 

signals) and 𝜃 are learned parameters. The decision is to minimize expected total cost (or a risk-adjusted criterion): 

𝑚𝑖𝑛
{𝑞𝑡}

 𝔼 ∑ 𝐶𝑡

𝑇

𝑡=1

 

s.t. inventory balance,  𝑞𝑡 ≥ 0, with expectations taken under the ML predictive law. A common optimal policy 

structure is again base-stock: choose an order-up-to level 𝑆𝑡 equal to a suitable predictive quantile of the lead-time 

demand 𝐷𝑡:𝑡+𝐿 = ∑ 𝐷𝑡+𝑖
𝐿
𝑖=0   For the single-period case (newsvendor), the optimal 𝑆∗ is the 𝛼-quantile of 𝐷𝑡  with 

𝛼 = 𝑝/(𝑝 + ℎ). With lead time and rolling horizons, one sets 

 

so, safety stock arises endogenously from predictive uncertainty rather than fixed buffers. When fixed ordering 

costs 𝐾 > 0 are material, the optimal policy tends toward an (𝑠, 𝑆) structure; in practice  (𝑠𝑡 , 𝑆𝑡) can be computed 

by minimizing the one-step expected cost-to-go using the predictive distribution (via quadrature or Monte Carlo 

over 𝐷𝑡:𝑡+𝐿). 

Risk and service promises fit naturally as probabilistic constraints. A 𝛽-fill-rate requirement 

𝔼[(𝐷𝑡:𝑡+𝐿 − 𝑆𝑡)+] ≤ (1 − 𝛽)𝔼[𝐷𝑡:𝑡+𝐿] or a chance constraint 𝑃𝑟{𝐷𝑡:𝑡+𝐿 ≤ 𝑆𝑡} ≥ 𝛾 translates to choosing 𝑆𝑡 as the 

corresponding predictive quantile 𝑄𝛾. If the firm is risk-averse to tail shortages, the objective can be replaced by 

a coherent risk measure such as CVaR: 

𝑚𝑖𝑛
{𝑞𝑡}

 𝐶𝑉𝑎𝑅𝜂(∑ 𝐶𝑡
𝑇
𝑡=1 ), 

which again maps to higher service quantiles under asymmetric costs. Learning is closed-loop: θ\thetaθ is updated 

each period using realized  (𝑥𝑡 , 𝐷𝑡), with proper scoring rules (e.g., pinball loss for quantiles or negative log-

likelihood for full distributions) ensuring calibrated uncertainty that directly improves the inventory decision. 
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A unifying rolling-horizon program highlights the contrast. The deterministic planner solves at each 𝑡: 

 

whereas the ML-stochastic planner solves 

 

typically yielding quantile-based 𝑆𝑡 and Monte-Carlo-evaluated costs. Both admit capacity, budget, or supplier-

MOQs as linear constraints (e.g., 0 ≤ 𝑞𝑡 ≤ 𝑞̅  ∑ 𝑐𝑗𝑞𝑗𝑡 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡𝑡𝑗 ). 

Comparative performance is assessed on out-of-sample trajectories by (i) total cost ∑ 𝐶𝑡𝑡 , (ii) service level metrics 

(fill rate, stockout probability), (iii) inventory turns and mean/variance of on-hand 𝐼𝑡
+, and (iv) sensitivity to 

demand shocks. Deterministic policies are straightforward and data-light but systematically mis-size buffers when 

volatility or asymmetry changes; ML-stochastic policies incur model complexity yet adapt 𝑆𝑡 to context through 

calibrated predictive distributions, recovering the classical newsvendor fractile at each period while honoring lead 

times and constraints. In stationary, low-variance environments with minor fixed costs, deterministic EOQ-type 

controls can approximate optimality; in nonstationary, promotion- or season-driven settings, the ML-based 

stochastic formulation strictly dominates by converting forecasted uncertainty not just the mean into economically 

optimal order-up-to levels. 

 

 

 

Fig. 1. Actual vs Forecasted Demand 

The first graph illustrates the comparative behavior between actual demand, deterministic forecasts, and ML-

based stochastic forecasts over 30 time periods. The actual demand (solid line with circles) fluctuates significantly 

due to inherent randomness, representing the real-world uncertainty faced by inventory managers. The 

deterministic forecast (dashed line) remains constant at the mean demand value (100 units), assuming perfect 

predictability and ignoring stochastic variability. Consequently, it fails to capture the peaks and troughs of true 

demand. In contrast, the ML-based stochastic forecast (dotted line) dynamically adjusts with each period, 

reflecting the adaptive nature of machine learning algorithms that utilize recent data trends, features, and historical 
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variability. This adaptive forecasting allows the ML model to approximate actual demand more closely, even 

though some deviations persist due to random noise. The visual difference between the static deterministic and 

flexible stochastic forecasts highlights the superiority of data-driven approaches in volatile markets. The graph 

demonstrates how ML-based demand prediction captures both trend and variability, offering a better foundation 

for inventory decisions. Overall, this comparison emphasizes the importance of probabilistic forecasting to reduce 

errors and enhance inventory performance under uncertain demand conditions. 

 

 

Fig. 2. Inventory Level Comparison 

The second graph compares the inventory level behavior of deterministic and ML-based stochastic inventory 

models over time. The deterministic model (solid line with circles) exhibits frequent fluctuations, reflecting its 

reliance on fixed reorder points derived from constant average demand. Because it does not account for demand 

variability, the deterministic model often oscillates between overstocking and stockouts, leading to inefficient 

capital utilization and potential service-level risks. On the other hand, the ML-based stochastic inventory model 

(square markers) demonstrates smoother, more stable inventory dynamics. This stability arises from the model’s 

ability to integrate probabilistic forecasts that adapt to demand uncertainty through predictive distributions. 

Through incorporating a safety buffer (quantile-based reorder level), the stochastic model proactively adjusts 

inventory levels before shortages occur. The adaptive nature of ML predictions allows the model to respond 

efficiently to changes in demand trends, maintaining optimal inventory without unnecessary excess. The gap 

between the two curves clearly indicates that the stochastic model provides improved inventory control by 

balancing holding and shortage costs effectively. Thus, the graph conveys how machine learning-based 

forecasting and optimization lead to robust inventory stability and enhanced supply chain resilience in uncertain 

environments. 

 

Fig. 3. Order Quantity Comparison 
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The third graph displays the ordering patterns generated by deterministic and ML-based stochastic models across 

30 time periods. The deterministic model (circle markers) issues orders in a rigid, step-like fashion ordering a 

fixed quantity whenever the inventory falls below the constant reorder point. This pattern often results in large, 

sudden orders followed by long idle periods, causing either excess stock or shortages. Such behavior reflects the 

deterministic model’s inability to adapt to real-time demand variability. Conversely, the ML-based stochastic 

model (square markers) exhibits more adaptive and smoother order quantities. The model integrates probabilistic 

demand forecasts, adjusting order sizes based on expected uncertainty, confidence intervals, and service-level 

constraints. As a result, the stochastic approach anticipates future fluctuations and makes smaller, frequent 

adjustments, reducing both ordering and holding costs. The visual comparison reveals that while deterministic 

ordering is reactive, the stochastic model is predictive responding to forecasted risks rather than realized shortages. 

This adaptive ordering behavior leads to cost efficiency and better service levels. Overall, the graph demonstrates 

how machine learning transforms traditional static inventory decisions into dynamic, data-informed strategies that 

align closely with real-world stochastic demand patterns. 

 

V. Conclusion 

The comparative evaluation demonstrates that deterministic inventory models, though computationally efficient 

and easy to implement, are inadequate under uncertain and fluctuating demand conditions. Their reliance on fixed 

reorder points and static assumptions leads to frequent stockouts or overstocking, increasing total cost variability. 

Conversely, ML-based stochastic models provide a robust, adaptive decision-making framework that aligns with 

real-world uncertainty. Through integrating probabilistic demand forecasting and risk-adjusted optimization, 

these models dynamically adjust inventory levels, ensuring optimal trade-offs between holding and shortage costs. 

The study concludes that in stable, low-variance environments, deterministic EOQ-type models remain sufficient; 

however, in dynamic, promotion- or season-driven markets, ML-based stochastic models deliver superior 

performance by translating forecast uncertainty into optimized order decisions. The integration of data-driven 

forecasting, probabilistic reasoning, and rolling-horizon control marks a transformative step toward intelligent, 

resilient, and economically optimal inventory management systems. 
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