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Abstract: This paper compares two main ways of managing inventory the traditional deterministic models and
modern machine learning (ML)-based stochastic models. In deterministic models, demand is treated as fixed and
known in advance. These models are simple, easy to use, and work well when demand changes very little.
However, they often fail when real-life demand is uncertain or changes quickly. The ML-based stochastic models
use data-driven methods to predict demand by learning from past trends, prices, seasons, and other factors. Instead
of assuming one fixed demand value, they use probability and statistics to show how demand may vary. This helps
companies make better decisions about how much to order and when to restock. The comparison shows that ML-
based models can adapt quickly, reduce total costs, and maintain better service levels. Deterministic models are
still useful for stable markets, but ML-based stochastic models perform better in uncertain, fast-changing
environments because they include learning, prediction, and real-time adjustment in inventory control.
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1. Introduction

Inventory management remains a vital component of supply chain efficiency, balancing production, storage, and
demand variability. Deterministic models have historically been used to optimize inventory systems under stable
and predictable conditions. For instance, Nand et al. (2021) emphasized deterministic approaches in analyzing
inventory parameters and control mechanisms for cost minimization. Similarly, Benkherouf and Gilding (2021)
proposed continuous-time deterministic models and hyper-generalized policies for supplier coordination.
Extending this, Mareeswaran and Anandhi (2021) applied a multi-item deterministic EOQ model to agricultural
materials, reducing post-harvest losses, while Mohapatra et al. (2021) integrated reverse supply chain concepts
for sustainability in aluminum can recycling.

However, real-world environments often involve uncertainty, leading to the development of stochastic and
machine learning (ML)-based approaches. Antic et al. (2022) incorporated stochastic demand variability in
pharmaceutical distribution, while Rojas et al. (2022) utilized hybrid ML-based multi-criteria models to link
supply chain success factors with inventory cost efficiency. Alrasheedi et al. (2022) introduced stochastic queuing-
based deterioration models for service optimization, and Alkahtani (2022) developed quantitative outsourcing
models enhancing decision-making under imperfect production. Collectively, these studies illustrate a paradigm
shift from deterministic optimization toward stochastic and data-driven inventory modeling, integrating
mathematical precision with adaptive intelligence to improve forecasting, decision-making, and overall supply
chain performance.
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1L Research Background

Alkahtani et al. (2022) focused on the increasing issue of production firms regarding outsourcing in SCM,
because of scarce skilled labour and technology. The research highlighted that, while outsourcing can decrease
capital investment pressure, it would complicate inventory management and production scheduling due to
additional inventories of both in-processes, especially the outsourced semifinished products for defined processes.
The study proposed a mathematical model and optimization approach to the outsourcing decision with imperfect
production and non-identical amounts of products. Real-life industrial data were employed to carry out numerical
experiments in order to solve for the optimal production and outsourcing quantities that minimize total SCM cost.
Sensitivity analysis demonstrated the importance of input parameters in total cost and could offer managerial
references for decision-making. This study is meaningful in that it provides a quantative model by which managers
can evaluate the economic feasibility of outsoucing processes to maintain efficiency of inventory and production
systems, thus making an important contribution to SCM.

Rojas et al. (2022) identified the key success factors for SCM, and discussed their significance with cost savings
in inventories at pharmacies and food nutrition services (FNS), which is a neglected area of this research.
Consideration of such relationships was addressed in the study by developing a new robust compromise (RoCo)
multi-criteria model that embeds non-linear programming and time-dependent demand. This novel methodology
enabled the development of a scoring system for assessing success factors in the context of supply chain, as well
as impact on efficient inventory cost. The real dataset came from systems which have been monitoring the
movement of product and cost, variables like purchasing organization, economies of scale and synchronized
supply were measured on a Likert’s scale. The authors found cost saving and approval factor scores to be
significantly related on multiple levels across the 79 FNS and pharmacy products. Endogeneity bias in the
relationships was addressed by internal instruments and generalized statistical moments. Higher cost savings
tended to be with less important factors for achieving supply chain success, showing the dual high-level interaction
of both operational efficiency and strategic issues in inventory decision making.

Nobil et al. (2022) studied the generalised model of the traditional Economic Production Quantity (EPQ) to cater
for real-world production and inventory control in a multi-product, single-machine problem which involves
imperfection in manufacturing. The research investigated the cases in which some of the manufactured items are
defective and should be repaired or disposed, reflecting practical real-world industry environments. Furthermore,
the resulting model included practical limitations like bounded warehouse space for each product and finite total
available capital and can be used to optimize production planning in actual manufacturing systems with inherent
resource constraints. It was also assumed that the set-up cost/time for each product depended on production
quantity; a further complication. The authors also developed their objective function into a convex nonlinear
programming problem (CNLPP) for better optimization. A heuristic procedure is proposed to solve this
challenging problem and its performance is illustrated through a numerical example, which confirmed that the
model could be used as an effective tool in fine-tuning short term production planning and inventory management
activities under various operating and financing parameters.

Antic et al. (2022) investigated an inventory control problem for a private pharmaceutical distribution company
in Serbia with sales operations in nine surrounding countries organized within central supply chain system. To
deal with the intricacy of such a configuration, the authors employed modern control theory and created a
conceptual model that incorporated realistic limitations as well as the operational behavior of the company’s
supply chain. They developed a dynamic discrete mathematical model for managing inventory of multiple drugs
with variable lead times, along with both stOchastic and deterministic demand. Deterministic demand was
described by means of a monthly sales forecast, and stochastic demand was treated as random deviations around
the forecasts plus/minus 20%. The objective of this study was to increase the discrepancy between planned and
actual average inventory levels, and decrease the supply deficit by tuning reorder quantities and delivery
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schedules. Efficiency was compared, under a variety of conditions, for two ordering policies: Lot-for-Lot and
Fixed Order Quantity. Validation of the model was performed using two years of historical data, which proved to
surpass deficiencies associated with existing distribution requirement planning system and to provide a practical
and flexible approach for achieving better inventory control in pharmaceutical supply chains.

Benkherouf et al. (2022) solved a classic problem in inventory theory finding the optimal lot size for total costs
of stocking and holding to be minimized under a finite-horizon deterministic system. The work suggested a general
model which could subsume several well-known models like lot-size, batching, repair and recovery models under
one analytic structure. They put constraints on legal control policies in the form of a partition of a closed interval
of real numbers, and then formulated the problem as a mixed-integer nonlinear programming (MINLP) model.
They showed that the MINLP has an optimal solution under mild conditions, and observed that submodular
function on a lattice theory is critical to handle the integer variable part. This model-based framework also allowed
us to generalize and extend previous results on optimality of partition inter-leaving and convexity properties of
the objective function. Furthermore, the model effectively addressed inventory models that were previously
infeasible such as demand governed by general differential equation and inventory model with shortages and
inflation widening the horizon of deterministic inventory optimization research.

Alrasheedi et al. (2022) discussed the ways corporate firms could achieve maximum productivity and
profitability that were faced with losses as a result of forgotten sales and poor customer services, if they maintained
equal demand and supply. To do so, we balanced real-world integrative queuing-inventory systems including M1
and Moo. In particular, fitting to practical requirement of the inventory control, the authors considered a non-
perfect deterioration model for an integrated production-inventory system (M/M/1/N-1) with finite planning time
followed by random lost sales. The aim of this study is to evaluate the customer satisfaction via introducing a
deterioration parameter (y) into the model for demand being a Poisson process and both service and lead times
having exponential distribution. The resulting approach was used in M/M/1/00 and M/M/1/N-1 system examined
earlier by Schwarz et al., solving the corresponding linear system obtained from steady-state balance equations,
comparisons of these results with simulations from Schwarz method. After subjecting the model to different values
of order quantity (Q), demand rate (A) and deterioration rate (y), it was observed that these parameters are highly
inter-related, which is very useful to decision-makers in the optimization of system performance meeting
organizational goals.

Darmawan et al. (2022) examined some production constraints in the manufacturing firms which meet
difficulties when the customers’ demand exceeds the production capacity (backlogging). In such circumstances,
companies may have to find the products they need from external parties in order to secure local supply. The
objective was to identify the best combination for in-house production and external procurement quantities in
order to minimize total inventory cost. Therefore, researchers structure it as a make-with-buy model and were
solved by branch and bound like exact solution software. The findings were used to illustrate the practicality and
usefulness of this model in minimizing total inventory costs, M, which consists of maintenance, amended order
cost, per setup ordering cost, and acquisition cost. The results validated the practical and efficient application of
the proposed model for manufacturing companies to operate with limited production capacity while minimizing
total system costs.

Nand et al. (2021) talked about modern globalization, information technology advancement, and production
machinery development that had increased competition in the industrial sectors. Causes for the competitive
environment included limited investment, environmental gains, improved transportation, and communications.
The report indicated that the growing requirements of the customer for customized products, short and constant
lead times, as well as high satisfaction levels were contributing to the demand for supply chain management
(SCM) and inventory control in businesses. In the past few decades, many theoretical methods were extensively
introduced to cope with problems in these fields by the means of minimizing cost or maximizing gain. The scholars
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stressed how SCM had become an important management tool to deal with rapid changes in customer demand in
the context of globalised industrial networks. The research also further described that the supply chain theory
covered everything from the stages - either directly or indirectly - to answer for customers’ needs, and aimed at
making products be made available accurately, timely and effectively. Inventory theory and control were a key
component of SCM, the report stated, which was also important factor in controlling materials from raw resources
to final products within the overall supply chain system.

Pando et al. (2021) has discussed an inventory model for a single commodity with demand rate that was stock
dependent. The model considered three fixed inventory costs (ordering, purchasing, holding) and alternatively
developed a fresh way to use for obtaining the optimal policy investment return Marshalling. It was proved that
the maximum profitability results in minimizing the average inventory cost per unit, and the global optimum
solution of the objective function was found, indicating that a zero-ending inventory policy at each cycle is
optimal. They derived the closed-form solutions on lot-size and optimal profit, if either maximization of return-
on-investment (ROI) is targeted instead or to minimize the inventory cost per unit time but found a number of
differences including that the respective zero order points were not consistent between them. With this, they claim
that the best lot size under the MROCPP is invariant against cost of purchase and selling price fluctuation.
Sensitivity analysis through partial derivative has further demonstrated that the maximum ROI is highly sensitive
to the price of selling material and purchasing cost in comparison with other parameters. Finally, some numerical
examples were proposed to verify the results and also give managerial insight on inventory control under the
retailing environment.

Benkherouf and Gilding (2021) concentrated on finding the optimum inventory policy in that case of an infinite-
horizon deterministic continuous-time, continuous-state fundamental model under which the stock level follows
a differential equation when no ordering their apex is issued. The decision-maker was able to purchase from
several suppliers, with different ordering and purchasing costs and his goal was to minimize the discounted total
cost over an infinite planning horizon. The problem formulated here has the optimal policy at its equilibrium as
the solution of some quasi-variational inequality whose solvability would lead to one of three possible cases; an
existence and uniqueness of a policy solution or a generalised solution that holds under similar space conditions
or inexistence such solutions. The authors established sufficient and necessary conditions for each of these cases,
and used examples to demonstrate when they would occur that provided useful insights into the coordination
problem of the optimal supplier selection and order sizing in a significantly complicated inventory model.

Mareeswaran et al. (2021) stressed on the importance of efficient inventory control in farm materials to reduce
post-harvest losses due to storage. The analysis used Multi-Item Deterministic Model for EOQ which is tabulated
for short, medium and long grain varieties of rice which are the main grains in India. The EOQ for each rice
product was based on processing costs, and holding costs in milling industries. The research sought to alleviate
storage problems and minimize post-harvest losses, thus improving operational efficiency and effectiveness in
agricultural stocks management.

Benkherouf et al. (2021) considered a deterministic inventory model of continuous time and state, in which the
stock level changed according to a differential equation if without controls. The stock was being observed
continuously and could be replaced at any time with the decision maker having to choose between several
suppliers who assumed different costs of ordering and purchasing. The problem of minimizing the overall
inventory cost over an infinite planning horizon was addressed in the research by formulating it as a QVI. The
QVI was shown to have a special solution that corresponded to the generalized policy under certain attractive
conditions established earlier by the authors. In an alternative setting, a new optimal control policy, called hyper-
generalized policy was found and theoretical justification provided.
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Mohapatra et al. (2021) developed a novel model for the production of 250 ml aluminium refreshment cans,
recycling and reusing. They considered also that collated cans were distributed to untainted (non-tainted) cans
that are recycled or reprocessed in the primary aluminium through mixing it with primary aluminium for new can
production, and tainted one that is sold as low-quality aluminium-use including design by vendors or exported,
and scraping. The article used numerical analysis to examine policies that can lead to smaller total inventory costs
and fewer cans sent off to the scrap yards. The findings indicated that the amount of collected cans had the greatest
effect upon the total system cost per unit time, demonstrating again how the effectiveness of collection and
recycling with regards to sustainability within inventory control is paramount.

II1. Finding From the Literatures
Author(s) & | Model Type /| Key Methods or | Key Findings /| Managerial or
Year Focus Techniques Used Contributions Practical
Implications
Alkahtani Deterministic— Nonlinear Optimized Helps firms balance
(2022) Optimization for | mathematical model | outsourcing and | outsourcing cost
SCM Outsourcing | using real industrial | production quantities | with production
data; sensitivity | under imperfect | efficiency
analysis conditions
Rojas et al. | ML-Based Robust Compromise | Linked inventory | Provides a data-
(2022) Stochastic Multi- | (RoCo) hybrid model | cost savings with | driven framework to
Criteria SCM integrating nonlinear | SCM success factors | identify success
programming  with | using real FNS and | factors and cost
time-dependent pharmacy data efficiency
demand
Nobil et al. | Deterministic— Convex  Nonlinear | Modeled imperfect | Aids manufacturing
(2022) Generalized EPQ | Programming; production with | firms in realistic
for Multi-Product | Heuristic setup cost/time | short-term
Systems optimization dependency and | production planning
warehouse
constraints
Antic et al. | Stochastic & | Discrete Incorporated variable | Improved
(2022) Deterministic mathematical control | lead  times and | pharmaceutical
Dynamic Model model;  Lot-for-Lot | random demand | inventory  control
vs. Fixed Order | variations with flexible policy
policies adaptation
Benkherouf & | Deterministic— Mixed-Integer Unified lot-size, | Extends
Gilding (2022) | Finite Horizon | Nonlinear batching, and | deterministic
Optimization Programming recovery models | models to include
(MINLP); under one framework | inflation and
Submodular function shortage effects
theory
Alrasheedi et | Stochastic— M/M/1/0 and | Integrated Supports  service-
al. (2022) Queue-Based M/M/1/N-1 queuing | deterioration and | based firms in
Deterioration systems;  nonlinear | lost-sales parameters | balancing demand—
Model steady-state equations | for real-time | supply variability
inventory
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Darmawan et | Deterministic— Branch-and-Bound Balanced  internal | Reduces total
al. (2022) Make-or-Buy optimization; capacity | production and | system cost and
Model constraints external procurement | supports constrained
under limited | manufacturing
capacity
Nand et al. | Conceptual— Theoretical analysis | Discussed Provided strategic
(2021) Deterministic of SCM & inventory | globalization, insights for SCM
SCM Review evolution technology, and | adaptability in
competition impacts | global markets
on inventory theory
Pando et al. | Deterministic— Closed-form Demonstrated zero- | Guides retail firms
(2021) Stock-Dependent | solutions; sensitivity | ending inventory as | on balancing ROI
ROI Model analysis optimal under ROI | and inventory costs
maximization
Benkherouf & | Deterministic— Quasi-Variational Derived  necessary | Enables long-term
Gilding (2021) | Infinite Horizon | Inequality (QVI) | conditions for | multi-supplier
Multi-Supplier formulation optimal supplier | coordination  and
Model policy cost minimization
Mareeswaran | Deterministic— EOQ modeling across | Reduced post- | Supports
& Anandhi | Multi-Item EOQ | grain  types; cost | harvest losses and | agricultural
(2021) for Agriculture minimization optimized rice | efficiency and
milling inventory reduced wastage
Benkherouf & | Deterministic— QVlI-based hyper- | Provided generalized | Broadened scope of
Gilding (2021) | Hyper- generalized (s,S) | control policy for | deterministic
Generalized model continuous systems inventory theory
Policy applications
Mohapatra et | Deterministic— Numerical simulation | Modeled can | Encourages
al. (2021) Reverse  Supply | and recycling | recycling for | sustainable
Chain Model optimization minimal cost and | production and
maximal reuse circular  economy
integration

Iv.

Mathematical Model of Deterministic vs. ML-Based Stochastic

Consider a discrete review horizon t = 1, ..., T with nonnegative random demand D;, lead time

L € Z = 0, and per-unit holding, shortage (backorder), and purchasing costs h, p, c, respectively; a fixed ordering

cost K may apply when an order is placed.

Let g, = 0 be the order quantity at time ¢, I, the on-hand inventory at the start of t, and B, backorders (if allowed).

The inventory balance with lead time is

liy1 =1 — D¢ + Ry, R, ={

qe—L t>1L
0, t<L’

nonnegativity conventions. The per-period cost is

with Bt = max{0, D; — I;} for backordered demand and the usual

C, = K1{q; > 0} + cq; + h(I;21)" + p(I;41)~, where x* = max{x, 0} and x~ = max{—x, 0}.

Available online at https://psvmkendra.com

137




L

ANUSANDHANVALLARI

ISSN: 2229-3388

gy

In the deterministic model, uncertainty is collapsed to a point forecast D,. Typical choices are the EOQ/static-
demand setting or a rolling myopic policy under time-varying forecasts. With L = 0 and constant D, the EOQ

solution minimizes K % +cl+ %Q (where 2 = D is the demand rate) to give Q* = \/2KA/h and a reorder point

r = D - L Under time-varying D,, a base-stock policy sets the order-up-to level S, = ¥_, D,,; (plus optional
safety stock tuned by a fixed buffer) and chooses q; = max{0,S; — I;}. The optimization objective over the
horizon is purely deterministic:

T

min

{q:} Z Clpe=p,
t=1

s.t. the inventory balance and g, = 0.

Service levels are enforced via hard constraints (e.g., no stockouts: I;,; = 0) or by embedding a fixed safety stock
ssothatS, = ¥t D,y +s.

Because variability is ignored, the buffer is typically chosen by rules of thumb (e.g., multiples of o estimated from
residuals), not by an explicit probabilistic trade-off.

In the ML-based stochastic model, demand is modeled as a predictive distribution D, | F; ~ pg(-; x;) delivered
by an ML model (e.g., probabilistic gradient boosting, quantile regression, deep nets with distributional outputs,
or Bayesian ensembles), where x, are features available at time ttt (prices, promotions, calendars, weather, macro
signals) and @ are learned parameters. The decision is to minimize expected total cost (or a risk-adjusted criterion):

] T
min
By
{a.} ‘
t=1
s.t. inventory balance, gt = 0, with expectations taken under the ML predictive law. A common optimal policy
structure is again base-stock: choose an order-up-to level S; equal to a suitable predictive quantile of the lead-time

demand Dy.;,;, = ¥¥_, D;,; For the single-period case (newsvendor), the optimal S* is the a-quantile of D, with
a = p/(p + h). With lead time and rolling horizons, one sets

P

S = Qat(Dt:t—L | -7‘-15)7 Qp = ma qr = rnax{O, St — It},

so, safety stock arises endogenously from predictive uncertainty rather than fixed buffers. When fixed ordering
costs K > 0 are material, the optimal policy tends toward an (s, S) structure; in practice (s;,S;) can be computed
by minimizing the one-step expected cost-to-go using the predictive distribution (via quadrature or Monte Carlo
over Dy.gyp)-

Risk and service promises fit naturally as probabilistic constraints. A §-fill-rate requirement

E[(Derr, — S)T] < (1 = B)E[Dy.¢41] or a chance constraint Pr{D;.,., < S;} = y translates to choosing S; as the
corresponding predictive quantile Q. If the firm is risk-averse to tail shortages, the objective can be replaced by
a coherent risk measure such as CVaR:
min
CvaR,>T_. C,),
{q:) n(Xe=1Ce)
which again maps to higher service quantiles under asymmetric costs. Learning is closed-loop: 6\thetaf is updated

each period using realized (x;, D;), with proper scoring rules (e.g., pinball loss for quantiles or negative log-
likelihood for full distributions) ensuring calibrated uncertainty that directly improves the inventory decision.
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A unifying rolling-horizon program highlights the contrast. The deterministic planner solves at each t:

t+H

min Cr(D s.t. balance,
{qf;t_H}; WD)

whereas the ML-stochastic planner solves

t+H
min JE[ZCk
k=t

{f]t L+H}

t+H
]-}] or min CVaR,, (Z Ckl]:t) s

k=t

typically yielding quantile-based St and Monte-Carlo-evaluated costs. Both admit capacity, budget, or supplier-
MOQs as linear constraints (e.g., 0 < qt < g Y;cjqjt < Budgett).

Comparative performance is assessed on out-of-sample trajectories by (i) total cost Y., Ct, (ii) service level metrics
(fill rate, stockout probability), (iii) inventory turns and mean/variance of on-hand I}, and (iv) sensitivity to
demand shocks. Deterministic policies are straightforward and data-light but systematically mis-size buffers when
volatility or asymmetry changes; ML-stochastic policies incur model complexity yet adapt S; to context through
calibrated predictive distributions, recovering the classical newsvendor fractile at each period while honoring lead
times and constraints. In stationary, low-variance environments with minor fixed costs, deterministic EOQ-type
controls can approximate optimality; in nonstationary, promotion- or season-driven settings, the ML-based
stochastic formulation strictly dominates by converting forecasted uncertainty not just the mean into economically
optimal order-up-to levels.

Actual vs Forecasted Demand

130F Actual palrvwland
=== Deterministic Forecast

----- ML-Based Forecast

Demand

0 5 10 15 20 25 30
Time Period (t)

Fig. 1. Actual vs Forecasted Demand

The first graph illustrates the comparative behavior between actual demand, deterministic forecasts, and ML-
based stochastic forecasts over 30 time periods. The actual demand (solid line with circles) fluctuates significantly
due to inherent randomness, representing the real-world uncertainty faced by inventory managers. The
deterministic forecast (dashed line) remains constant at the mean demand value (100 units), assuming perfect
predictability and ignoring stochastic variability. Consequently, it fails to capture the peaks and troughs of true
demand. In contrast, the ML-based stochastic forecast (dotted line) dynamically adjusts with each period,
reflecting the adaptive nature of machine learning algorithms that utilize recent data trends, features, and historical
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variability. This adaptive forecasting allows the ML model to approximate actual demand more closely, even
though some deviations persist due to random noise. The visual difference between the static deterministic and
flexible stochastic forecasts highlights the superiority of data-driven approaches in volatile markets. The graph
demonstrates how ML-based demand prediction captures both trend and variability, offering a better foundation
for inventory decisions. Overall, this comparison emphasizes the importance of probabilistic forecasting to reduce
errors and enhance inventory performance under uncertain demand conditions.

Inventory Level Comparison: Deterministic vs ML-Stochastic Model
200

150
100

50

Inventory Level

Deterministic Inventory
—=— ML-Based Inventory
0 5 10 15 20 25 30
Time Period (t)

=50

Fig. 2. Inventory Level Comparison

The second graph compares the inventory level behavior of deterministic and ML-based stochastic inventory
models over time. The deterministic model (solid line with circles) exhibits frequent fluctuations, reflecting its
reliance on fixed reorder points derived from constant average demand. Because it does not account for demand
variability, the deterministic model often oscillates between overstocking and stockouts, leading to inefficient
capital utilization and potential service-level risks. On the other hand, the ML-based stochastic inventory model
(square markers) demonstrates smoother, more stable inventory dynamics. This stability arises from the model’s
ability to integrate probabilistic forecasts that adapt to demand uncertainty through predictive distributions.
Through incorporating a safety buffer (quantile-based reorder level), the stochastic model proactively adjusts
inventory levels before shortages occur. The adaptive nature of ML predictions allows the model to respond
efficiently to changes in demand trends, maintaining optimal inventory without unnecessary excess. The gap
between the two curves clearly indicates that the stochastic model provides improved inventory control by
balancing holding and shortage costs effectively. Thus, the graph conveys how machine learning-based
forecasting and optimization lead to robust inventory stability and enhanced supply chain resilience in uncertain
environments.

Order Quantity Comparison: Deterministic vs ML-Stochastic Model

3 U

80 Deterministic Orders
—#— ML-Based Orders

(=]

-
1=}
S

Order Quantity

0 5 10 15 20 25 30
Time Period (t)

Fig. 3. Order Quantity Comparison
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The third graph displays the ordering patterns generated by deterministic and ML-based stochastic models across
30 time periods. The deterministic model (circle markers) issues orders in a rigid, step-like fashion ordering a
fixed quantity whenever the inventory falls below the constant reorder point. This pattern often results in large,
sudden orders followed by long idle periods, causing either excess stock or shortages. Such behavior reflects the
deterministic model’s inability to adapt to real-time demand variability. Conversely, the ML-based stochastic
model (square markers) exhibits more adaptive and smoother order quantities. The model integrates probabilistic
demand forecasts, adjusting order sizes based on expected uncertainty, confidence intervals, and service-level
constraints. As a result, the stochastic approach anticipates future fluctuations and makes smaller, frequent
adjustments, reducing both ordering and holding costs. The visual comparison reveals that while deterministic
ordering is reactive, the stochastic model is predictive responding to forecasted risks rather than realized shortages.
This adaptive ordering behavior leads to cost efficiency and better service levels. Overall, the graph demonstrates
how machine learning transforms traditional static inventory decisions into dynamic, data-informed strategies that
align closely with real-world stochastic demand patterns.

V. Conclusion

The comparative evaluation demonstrates that deterministic inventory models, though computationally efficient
and easy to implement, are inadequate under uncertain and fluctuating demand conditions. Their reliance on fixed
reorder points and static assumptions leads to frequent stockouts or overstocking, increasing total cost variability.
Conversely, ML-based stochastic models provide a robust, adaptive decision-making framework that aligns with
real-world uncertainty. Through integrating probabilistic demand forecasting and risk-adjusted optimization,
these models dynamically adjust inventory levels, ensuring optimal trade-offs between holding and shortage costs.
The study concludes that in stable, low-variance environments, deterministic EOQ-type models remain sufficient;
however, in dynamic, promotion- or season-driven markets, ML-based stochastic models deliver superior
performance by translating forecast uncertainty into optimized order decisions. The integration of data-driven
forecasting, probabilistic reasoning, and rolling-horizon control marks a transformative step toward intelligent,
resilient, and economically optimal inventory management systems.
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