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Abstract: This study explains how mathematical models help understand and control the spread of infectious 

diseases. Through using optimal control and stability analysis, researchers can find how diseases grow, how fast 

they spread, and what measures can stop them. Models like SEIR, SVIR, and SEIQR help study diseases such as 

measles, malaria, dengue, and tuberculosis. These models show that factors like vaccination, human behavior, and 

population movement affect transmission. Stability and control analysis help identify safe conditions where 

diseases stop spreading. This research helps design better strategies for disease prevention and long-term public 

health planning. 
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I. Introduction 

Mathematical modeling has become a cornerstone in understanding and mitigating infectious disease dynamics 

through quantitative prediction, optimal control, and stability analysis. Over the last few years, significant 

advancements have been made to refine the accuracy of these models and their applicability to real-world 

scenarios. For instance, Alemneh and Belay (2023) developed an extended SVIRP measles transmission model to 

assess the effects of indirect contact rates and interventions, verifying both global and local stability through the 

Castillo–Chavez criterion. Similarly, Alhaj (2023) applied a deterministic malaria transmission model and 

demonstrated forward bifurcation and equilibrium stability using the next-generation matrix approach. Fiatsonu 

et al. (2023) emphasized the importance of host-vector relationships in Chagas disease, revealing dogs’ significant 

role in transmission, while Hill et al. (2023) integrated behavioural heterogeneity into livestock models to analyze 

how farmers’ vaccination behaviours affect outbreak control. Age-structured modeling by Li-Martín et al. (2023) 

for dengue showed how demographic differences shape stability and transmission outcomes. Studies like 

Møgelmose et al. (2022) and Abidemi and Aziz (2022) incorporated human population dynamics and vaccination 

strategies to better reflect real epidemic processes. Recent contributions also highlight the necessity of spatial, 

stochastic, and computational methods. Lin and Wen (2022) illustrated the role of spatial epidemiology in 

mapping and predicting infection spread, while Pokharel and Deardon (2022) used Bayesian emulation techniques 

for efficient inference in complex spatial models. Furthermore, Tyagi et al. (2021) combined SEIQR modeling 

with deep learning (LSTM) for COVID-19 prediction, and Das et al. (2021) analyzed tuberculosis through 

bifurcation and stability frameworks. These studies underscore the central role of optimal control and stability 

analysis in understanding threshold conditions (R₀), equilibrium behavior, and intervention efficiency. They 

provide a foundation for designing evidence-based health policies that adapt to heterogeneous, spatially dynamic, 

and behaviorally influenced disease systems. 
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II. Review of related literature 

Alemneh et al. (2023) described measles as one of the commonest communicable diseases responsible for about 

2.6 million deaths per annum. Their work analysed the mechanism of measles transmission through discussing 

indirect contact rate (spread between an infectious and a susceptible host) and by extending SEVIR model to 

SVIRP. They calculated the disease-free equilibrium, derived the effective reproduction number (REff) and 

resolute stability. The global stability of the disease-free equilibrium point was verified by using the Castillo–

Chavez stability criterion, and local stability (when REff 1 proved. Sensitivity analysis and numerical simulations 

were conducted to investigate the effect of constraints on measles spread dynamics, showing that Indirect contact 

rate made the most contribution in increasing disease outburst. The study also found that intervention and 

treatment approaches have played a major role in mitigating the overall impact of measles on the community. 

Alhaj et al. (2023) Stated that malaria was among the deadliest of diseases caused by Plasmodium-class parasites 

and spread to humans through bites of female Anopheles mosquitoes. They developed a deterministic 

mathematical model of malaria transmission between humans and mosquitoes. The basic reproduction number 

((\mathcal{R}{0})) was obtained by the next-generation matrix method, and the stability of the equilibria was 

established through (\mathcal{R}{0}) in order to show that a forward bifurcation occurred. They observed that 

the malaria dies out if (\mathcal{R}0) was less than one, while it spreads when it is greater than one. Both the 

local and global sensitivity analysis for (\mathcal{R}{0}) were conducted, while we implemented the model 

simulation through Runge–Kutta fourth-order method in MATLAB. Besides, the influences of important 

parameters were discussed and plotted. The results of the simulations agreed with those obtained by stability 

analysis for (E{def}). The work also considered the effects of malaria control measures on crucial transmission 

parameters and suggested how better to control, and ultimately eliminate, malaria transmission. 

Fiatsonu et al. (2023) reported that Chagas disease, also known as American trypanosomiasis, was a zoonotic 

vector-borne disease caused by the parasite Trypanosoma cruzi, which infected several mammalian species 

throughout the Americas including people and canines. They performed a scoping review of mathematical models 

investigating the role of dogs in T. cruzi transmission and found ten peer-reviewed studies that had explicitly 

modelled dog-borne T. cruzi transmission dynamics. The authors also talked about the various modeling 

approaches, parameters of transmission, pathways of disease spread and control measures analyzed in these 

studies. In general, the modeling studies had shown that not only were dogs at high risk of becoming infected with 

T. cruzi, but that they also played a major role in transmitting this parasite to humans. In addition, removal of 

infected dogs from the household or frequent use of insecticides was identified as effective to decrease T. cruzi 

infection for both humans and dogs. However, after suspension of insecticide spraying, T. cruzi infections in dogs 

appeared to go back to pre-spraying levels. The study also pointed out the limitations and prospects for further 

modelling studies to better understand Chagas disease transmission dynamics and control. 

Hill et al. (2023) stressed the importance of human behaviours in controlling livestock disease outbreaks, 

especially with respect to vaccination uptake. They added that conventional mathematical models that guided such 

responses were often based on the assumption of homogeneous response to information among farmers. To tackle 

this, the investigators considered how differences in farmers’ vaccination practice could be incorporated into 

mathematical models. They constructed and used a computer interface to record the vaccination choices of 60 

farmers in response to a simulated period of fast spreading disease that linked back to their 

psychological/behavioural profiles. They conducted cluster analysis and determined consistent profiles of 

heterogeneity in vaccination behaviour. By embedding such behavioural clusters within a mathematical model for 

the spread of an infectious disease in a rapidly mixing livestock population, they investigated via computational 

simulations how allowing for heterogeneity in behaviour would affect epidemiological and economic metrics. 
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They found that, as compared to thematic profiles, such a homogenous farmer behavioural assumption resulted in 

markedly different projected outbreak size, duration, and economic outputs. 

Li-Martín et al. (2023) found that age presented as a main risk factor in vector borne infectious diseases, partially 

because children depend on adults to protect themselves and were exposed less often to wear mosquitoes than 

were adults who spent little time outdoors. To model this, they considered a dengue disease that stratifies the 

human population into two compartments, as children and adults were more or less likely to be bitten by 

mosquitoes. The basic reproduction number (R_0) of dengue was obtained through computing the next-generation 

operator, and the local stability and global stability of the disease-free equilibrium were studied. A Lyapunov 

functional method was used to obtain sufficient conditions for the global asymptotic stability of the endemic 

equilibrium. It was also shown that the globally asymptotically stable of endemic equilibrium within feasible 

region still holds when (R_0 > 1) by setting the period of infection for children equal to that of adults. In addition, 

the model was analysed numerically by considering the parameter values that were taken from available literature 

and to find out which parameters has a significant impact on variation of (R_0) using local sensitivity analysis 

that can provide a more biological meaning over what it means in terms of changes in R_{0}. 

Møgelmose et al. (2022) observed although more infectious disease models were accounting for demographic 

host population dynamics, the modelling approaches and assumptions differed greatly. For that purpose, they 

performed a systematic review to investigate how dynamic populations were incorporated in infectious disease 

models and systematically searched PubMed and Web of Science for studies addressing transmission of infectious 

diseases in dynamic host populations. According to the PRISMA checklist, they read studies identified through 

the search and extracted data. A total of 46 articles with 53 dynamic population infectious disease models were 

reviewed. Of those, 71% included the modelling of population dynamics either directly according to CCBMs or 

IBMs and 29% applied population projections as external input. Fertility and mortality were predominantly age-

specific, or if specified, age-and-sex specific but 40% of the models used crude fertility ratios. Households were 

included in 15% of the models, all but one being IBMs (with external population prospects). In addition, 17% of 

the models we reviewed conducted a demographic sensitivity analysis. The most studies included all of fertility, 

mortality, and migration explicitly as processes and representation at a population level was more common than 

IBMs. The authors noted demographic factors other than age and sex were difficult to include in population models 

and were therefore generally specific only to IBMs. Although these IBMs modelled families and social networks, 

the degree of detail in demographic processes was comparable to that found in CCBMs. These common 

assumptions were related to in closing by the study, which also highlighted some potential paths for model 

enhancements. 

Abidemi et al. (2022) reported that dengue (applying to as a mosquito-borne disease) had been endemic for 

several months in Malaysia. They investigated the impacts of various vaccination scenarios alone and with 

treatment and adulticide control on the population dynamics of dengue in Johor, Malaysia. First, they proposed a 

compartmental model (a mass action one still with random vaccination distribution process) including the 

vaccinated compartment. The model was encountered to be exhibiting backward bifurcation whether under the 

conditions of perfect vaccination or in terms of imperfect vaccination. Data collected during the 2012 dengue 

outbreak in Johor were used to estimate the basic reproduction number of the outbreak and perform a sensitivity 

analysis of how individual model parameters affected dengue transmission and spread among population 

members. The authors then constructed a deterministic model that incorporated vaccination as the control 

parameter (with time-independent rates) together with treatment and adulticide interventions. Subsequent 

simulations were conducted to evaluate the effects of alternative control tactics. Results revealed that stategies 

adopted, can effectively reduce the transmission of dengue than with no control treatment and efficiency analysis 
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demonstrated combined vaccination, treatment and adulticide controls was found to be the most efficient method 

in preventing and controlling dengue in Johor, Malaysia. 

Tresna et al. (2022) undertook a review of published papers on typhoid disease transmission models to determine 

how S. typhi was transmitted between humans and vectors under diverse scenarios of interventions aimed at 

containing the spread of typhoid. The purpose of this study was to determine the categories of models that were 

developed, describe current studies and analyze interventions that are included with these models. A 

comprehensive search and review were conducted by searching Dimension, Scopus, and ScienceDirect databases 

for research papers published from 2013 to 2022 on typhoid fever transmission using compartmental mathematical 

models. A total of 111 different articles were initially obtained from this search process of which 23 satisfied the 

inclusion criteria as it appeared in the defined context of the terms searched. These articles were reviewed to 

determine their model type and the interventions that they modelled. The interventions found were collated to 

serve as an overview for possible aspects in the model development. The review highlighted the role of 

mathematical models in dissecting and elucidating typhoid transmission dynamics following interventions. The 

investigators noted that the next iterations of typhoid models could be enriched by inclusion of direct and indirect 

interventions among humans. 

Hiram Guzzi et al. (2022) pointed out that the regulation of contagious diseases was not only an important area 

of research, but also has a clinical and political implication. They highlighted how this area engaged with a range 

of computational techniques such as ordinary differential equations, stochastic simulation frameworks and graph 

theory, in combination with interaction data at scales from molecular to social interactions to understand the 

emergence and spread of disease. Covid-19 was mentioned as the best example for how these models could help 

us to avoid harsh lockdowns by providing potentially effective options, like optimal vaccine prioritization. 

Particular emphasis was placed on graph-based epidemiological models, which were found to be a powerful 

instrument for improving the control of disease. They included examples for the COVID-19 pandemic, and 

demonstrated how such methods might be further extended to other infectious diseases so as to better capture 

disease diffusion dynamics. 

Dankwa et al. (2022) pointed out that in the absence of studies confirming model identifiability, findings from 

infectious disease transmission models could be flawed and to potentially misleading recommendations. They 

said that structural identifiability analysis verifies if there are unique solutions for all unknown model parameters 

based on the structure of the model. In their work, they explored the structural identifiability of various 

deterministic compartmental models for infectious disease transmission by considering impact of distinct data 

types used as model outputs and its implications on identifiability of unknown parameters which included initial 

conditions. The model configurations were defined, each with unique space-partitioning structure and output data 

types (the combination of internal MCML diversity matrix (Bhattacharyya et al., 2014), SIMPLIFICATION I: the 

reduction of differential scattering coefficient at frequent frequencies (Devore et al., 1988; Cuccia et al., 2006) 

and L1, or absolute value loss regularization). Authors investigated four compartmental model structures and three 

types of data which are widespread used in disease surveillance, incidence, prevalence and detected vector counts. 

They showed that the structural identifiability of some parameters changed with output type, and models using 

several output types had generally more parameters identifiable than those only using one. The investigation 

emphasised the importance of data types in understanding a key element of inference when employing 

compartmental infectious disease transmission models. 

Pokharel et al. (2022) articulated that mechanistic models of infectious diseases (MDs) were indispensable for 

comprehending the spatiotemporal spread dynamics. While it would be preferable if these models could 

incorporate covariate information and longitudinal measurement of each individual’s infection status, complete 

data were generally not available in practice because the timing of infection was typically unknown. Other studies 
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have used, as a solution to censoring or missing data, Bayesian data augmented Markov chain Monte Carlo 

(MCMC) methods but these were computationally intensive for large disease systems. In this case, the authors 

suggested two approximate inference methodologies according to emulation-based approaches in order to reduce 

computational cost. Both approaches worked in the context of a Bayesian MCMC, however instead of using 

likelihood function-which was slow to compute-they relied on a Gaussian process-based approximation. The first 

approach entailed building an emulator of the discrepancy between the summary statistics of simulated and 

observed epidemic data, whereas the second one created an emulator for an importance sampling-based likelihood 

approximation. The results of their study have proved both methods were computationally efficient relative to 

standard Bayesian MCMC to infer patterns of transmission in complex infectious disease systems. Furthermore, 

they also found that the importance sampling-based method gives better performance. 

Lin et al. (2022) reported that spatial factors, e.g., distances between susceptible hosts and shared environments 

or contaminated materials, and infected animal species, were associated with human directly and indirectly 

transmitted infectious diseases. They stressed the importance of spatial concepts for the comprehension and 

control of emerging infectious diseases. With improvement in computing capability and statistical methods, there 

were new possibilities for visualising and analysing data on disease spatial patterns. In the review, they described 

frequently used spatial and spatio-temporal methods of infectious disease management in four parts: (1) 

visualization, (2) the overall clustering method, (3) hotspot detection approaches, and (4) risk factor analysis. 

Sections 1 - 3 considered both point and aggregated data (point & aggregate refer to individual- and population-

level data respectively, while the final section was on spatial regression methods adjusting for neighbourhood 

effects and spatial dependence. The scholars emphasized that analysing space-time variation of the spread of 

diseases could improve surveillance systems, assist in hypothesis generation and verification, and also facilitate 

designing preventive and control strategies. The authors also underscored the relevance of ethical considerations 

and judgements about data quality prior to implementing spatial-temporal analyses, with proposed future research 

focusing on improving the accuracy of differential global positioning system processes and reducing the 

uncertainty associated with Bayesian estimation methods. 

Becker et al. (2021) described the unexpected rise of using infectious disease dynamic transmission models 

during the COVID-19 pandemic for public health decision-making and policy development. They noted that such 

models served as a structure through which the transmission dynamics could be systematically investigated, and 

were capable of making both short-term and long-term predictions by incorporating assumptions on biological, 

behavioural, and epidemiological processes driving spread, burden (of disease), and surveillance. The authors 

further stated that in the context of COVID-19 and other communicable disease emergencies, such models 

provided valuable projections of possible disease progression, helped to examine intervention impacts, and 

estimated important transmission parameters. However, they also acknowledged that the fast-tracking of model 

development, evaluation, and deployment during times of emergency shed light on the need to understand in detail 

the strengths and weaknesses of these approaches. The review described how infectious disease dynamic models 

have developed over time, the necessity of robust testing and validation, and how models can be merged with 

reality to guide public health action. Rather than provide an exhaustive historical review, the paper emphasised 

how through purposeful embedding with policy and practice we could evolve public health modelling and improve 

the efficacy and robustness of such interventions in ongoing pandemics, as well as in future ones. 

Buckee et al. (2021) argued that social and cultural drivers shaped almost every aspect of infectious disease spread 

within the human population, including the ability to detect, comprehend, respond to epidemics. For contact-

mediated infections, however, they wrote that the spread of a pathogen depended on human contacts and that 

kinship, household organization, and broader patterns of social organization—what ultimately determined the 

dynamics of epidemics. Moreover, social, economic, and cultural settings influenced patterns of exposure; seeking 
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behaviour; outcome to infection; rates of diagnosis and reporting; the uptake of interventions. These social aspects 

of epidemiology were noted as difficult to measure (which therefore restricts the transferability of modelling 

frameworks into policy application), but with growing data sources on human behaviour (e.g., from mobile 

devices and digital technologies) now increasingly being used as surrogates for behavioural drivers of disease 

spread. But they warned that it would take a lot more work to confirm and responsibly use these data for policy 

making. The research also implied that incorporating local knowledge in the construction of model structures as 

well as the interpretation of new behavioural data streams might generate more policy-relevant infectious disease 

models and support building strong, generalizable theories connecting human behaviour to disease dynamics. 

Mousa et al. (2021) carried out a systematic review and meta-analysis of the effects of contact and mixing 

between populations on transmission of respiratory pathogens including SARS-CoV-2. The analysis was based 

on data from 28,503 participants and 413,069 contacts in 27 surveys that had compared contact patterns by income 

strata (low-, middle- and high-income countries) considering number of contacts, duration of contacts, location, 

and physicality. Contact rates were shown to decrease with age in higher-income and increase in low-income 

settings, where older individuals come into contact often with younger people through extensive living 

arrangements across households of multiple generations. More contacts had taken place in the home in low-

income settings, and work and school related more frequently in high income settings.  

Kirkeby et al. (2021) presented the application of stochastic and network ow computer models for veterinary 

science with simulations to predict disease dynamics, evaluate control strategies, and compare results against eld 

data. They concentrated on models representing single individuals, and gave a tangible introduction to how such 

a model is made and used. The paper describes the main steps to the design of such models both before, during 

and after programming. It highlighted the need for verification (to make sure that model behaves as expected), 

validation (validate the results of the model) and convergence analysis to guarantee stability of models that 

simulates endemic diseases. The authors also emphasized the use of sensitivity analysis to assess the impacts of 

parameter uncertainty. They also provided code samples to help new researchers realize their models, and we’re 

kept them updated with the latest disease spread modelling literature. 

Tyagi et al. (2021) studied the dynamics of infectious disease transmission by establishing a theoretical 

mathematical model in terms of the SEIQR (Susceptible-Exposed-Infected-Quarantined-Recovered). the study 

was designed to investigate into disease dynamics and control by proving the positivity and boundedness of the 

model solutions, computing basic reproduction number to draw stability analysis of equilibria for epidemiological 

significance. For validation and parameter estimation, the authors then used their model on actual reported real 

COVID-19 cases in Russia and India. They also introduced a memory-based Long Short-Term Memory (LSTM) 

model to capture temporal relationships from COVID-19 time series and predict future developments. The results 

of the SEIQR mathematical model and the LSTM model were further compared to obtain the more dependable 

forecasting of disease development. 

Retkute et al. (2021) proposed a novel statistical approach utilizing the Adaptive Multiple Importance Sampling 

(AMIS) algorithm to facilitate modelling of infectious disease transmission dynamics. The AMIS algorithm, 

making use of samples from earlier iterations in an iterative fashion to increase time efficiency, was extended to 

perform a simultaneous sampling over different targets by modifying the adaptation focus at each iteration. This 

change produced a substantial gain in sampling efficiency over the basic AMIS. The model integrated outputs of 

a geostatistical model of the prevalence, incidence or relative risk for an infectious disease and forecast these 

measures forward in time using a mathematical transmission model. The improved algorithm was validated 

through four specific case studies - ascariasis in Ethiopia, onchocerciasis in Togo, HIV in Botswana and malaria 

Democratic Republic of Congo-pre-amble, illustrating how the novel approaches improve disease modelling and 

forecasting. 
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Das et al. (2021) considered tuberculosis as a significant global health challenge and developed an SEIR-type TB 

transmission mathematical model with time-dependent boundaries using the proposed MCA framework. The 

entire population was partitioned into four classes according to the biological status, and a model of compartmental 

phases was used to study the effects of various factors on the infection-free and endemic equilibrium points. The 

analysis showed that the TB model was locally and globally asymptotically stable at the disease-free equilibrium 

when the basic reproduction number is < 1, while it has a new endemic equilibrium ≥ 1. Acentermanifold theory 

bifurcation analysis showed the presence of a forward bifurcation, thus exploring the dynamic behaviour of the 

model and its conditions for TB persistence and/or extinction. 

Thongsripong et al. (2021) stressed the importance of host–vector contact (including mosquito bites) in driving 

vector-borne disease (VBD) transmission, and criticized that studies based on traditional method may concentrate 

on vector density simply, while ignoring the behavior of host-mosquito contact. Their review was focused on 

synthesis of current knowledge and developing a unified theoretical construct that included host–mosquito contact 

rate, blood-feeding rate, and per capita biting rate from both biological and mathematical viewpoints. The results 

also illustrated that such contact rates could be significantly different depending on mosquito and host attributes, 

opposing to the classical view of a fixed daily biting rate based on gonotrophic cycle. Instead, it suggested 

alternative ecological models by means of functional response, blood index, forage ratio, and ideal free 

distribution. The authors suggested that it is appropriate to consider host–vector contact as an important integrative 

variable in mechanistic models of disease as its and strongly affects the transmission dynamics. They suggested 

that formal parameterization of contact rate models having empirical support would improve the understanding 

of ecological and behavioral factors contributing to VBD disease emergence, social behavior theory, pattern 

formation in spatial systems as well as disease prevention and control strategies. 

III.  Findings from Related Reviews 

Author(s) & 

Year 

Disease Studied Model / Approach 

Used 

Key Findings Tools / Methods 

Used 

Alemneh et al. 

(2023) 

Measles Extended SEVIR → 

SVIRP Model 

Indirect contact rate 

contributed most to 

outbreaks; global & local 

stability proven using 

Castillo–Chavez criterion; 

interventions reduced 

transmission. 

Sensitivity 

analysis, 

numerical 

simulations 

Alhaj et al. 

(2023) 

Malaria Deterministic 

mathematical 

model (Human–

Mosquito) 

Forward bifurcation at 

R₀=1; malaria dies out 

when R₀<1; validated via 

simulation; control 

measures reduce 

transmission. 

Next-generation 

matrix, Runge–

Kutta (MATLAB) 

Fiatsonu et al. 

(2023) 

Chagas Disease 

(T. cruzi) 

Scoping Review of 

Mathematical 

Models 

Dogs play major role in 

human transmission; 

insecticide spraying 

effective but temporary; 

Literature 

synthesis, 

parameter analysis 
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highlighted data/model 

gaps. 

Hill et al. 

(2023) 

Livestock 

Disease 

Behavioural-

Cluster 

Mathematical 

Model 

Heterogeneity in farmers’ 

vaccination behaviour 

alters outbreak size, 

duration, and economics; 

human behaviour critical. 

Cluster analysis, 

simulation 

modeling 

Li-Martín et 

al. (2023) 

Dengue Age-Structured 

Compartmental 

Model 

Age is a key risk factor; R₀ 

and stability depend on 

children–adult exposure; 

global stability confirmed 

for R₀>1. 

Lyapunov 

functional method, 

sensitivity analysis 

Møgelmose et 

al. (2022) 

Infectious 

Diseases 

(General) 

Systematic Review 

of Dynamic 

Population Models 

71% of models included 

population dynamics; 

fertility/mortality age-

specific; demographic 

sensitivity often missing. 

PRISMA protocol, 

systematic review 

Abidemi et al. 

(2022) 

Dengue 

(Malaysia) 

Compartmental 

Model with 

Vaccination, 

Treatment & 

Adulticide 

Combined interventions 

(vaccine + treatment + 

adulticide) most effective; 

backward bifurcation 

observed. 

Sensitivity & 

efficiency 

analysis, 

simulations 

Tresna et al. 

(2022) 

Typhoid Fever Review of 

Compartmental 

Models 

Identified 23 valid models 

(2013–2022); emphasized 

inclusion of direct & 

indirect human 

interventions in future 

models. 

Database review 

(Scopus, 

ScienceDirect) 

Hiram Guzzi 

et al. (2022) 

Contagious 

Diseases / 

COVID-19 

Computational & 

Graph-Based 

Modeling 

Graph-theoretical models 

effective for control; 

illustrated how network 

models improve 

intervention strategies. 

ODEs, stochastic 

simulations, graph 

theory 

Dankwa et al. 

(2022) 

Infectious 

Diseases 

(General) 

Identifiability 

Analysis of 

Compartmental 

Models 

Demonstrated data type 

affects parameter 

identifiability; multiple 

outputs increase 

identifiable parameters. 

Structural 

identifiability, 

MCML matrix 

Pokharel et al. 

(2022) 

Infectious 

Diseases 

(General) 

Bayesian Data-

Augmented 

Introduced efficient 

Gaussian process-based 

inference; reduced 

Bayesian MCMC, 

Gaussian Process 

Emulator 



 

Anusandhanvallari 

Vol 2024, No.1 

July 2024 

ISSN 2229-3388 

 

 

 

Available online at https://psvmkendra.com                                                                 511 

Mechanistic 

Models 

computational cost; 

importance sampling 

outperformed. 

Lin et al. 

(2022) 

Human & Animal 

Infectious 

Diseases 

Spatial and Spatio-

Temporal Models 

Highlighted value of 

spatial analysis for disease 

control; ethics and data 

quality emphasized for 

GPS-based modeling. 

Spatial regression, 

hotspot detection, 

GIS 

Becker et al. 

(2021) 

COVID-19 & 

Communicable 

Diseases 

Dynamic 

Transmission 

Modeling Review 

Models guided public 

health policy; stressed need 

for validation and 

transparent model–policy 

integration. 

Epidemiological 

modeling, policy 

analysis 

Buckee et al. 

(2021) 

Infectious 

Diseases 

(General) 

Social-Behavioural 

Epidemiological 

Modeling 

Social & cultural factors 

shape disease spread; 

behavioural data from 

mobile devices can 

enhance predictive models. 

Behavioural 

modeling, data 

analytics 

Mousa et al. 

(2021) 

Respiratory 

Pathogens 

(SARS-CoV-2) 

Meta-analysis of 

Contact and Mixing 

Patterns 

Contact rates vary by 

age/income; 

intergenerational contact 

drives transmission in low-

income settings. 

Meta-analysis, 

contact surveys 

Kirkeby et al. 

(2021) 

Veterinary 

Infectious 

Diseases 

Stochastic & 

Network Flow 

Models 

Emphasized model 

verification & validation; 

used sensitivity analysis for 

parameter uncertainty; 

provided code templates. 

Simulation 

modeling, network 

analysis 

Tyagi et al. 

(2021) 

COVID-19 SEIQR Model + 

LSTM Prediction 

Combined theoretical and 

ML model; validated on 

India & Russia data; LSTM 

improved forecasting 

accuracy. 

SEIQR modeling, 

LSTM (Deep 

Learning) 

Retkute et al. 

(2021) 

Ascariasis, 

Onchocerciasis, 

HIV, Malaria 

Adaptive Multiple 

Importance 

Sampling (AMIS) 

Enhanced sampling 

efficiency; integrated 

geostatistical & 

transmission models; 

validated on 4 disease case 

studies. 

AMIS algorithm, 

geostatistical 

modeling 
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Das et al. 

(2021) 

Tuberculosis 

(TB) 

SEIR-type Model 

with Time-

dependent 

Boundaries 

Model globally stable 

when R₀<1; forward 

bifurcation when R₀≥1; 

explored persistence and 

extinction conditions. 

MCA framework, 

bifurcation 

analysis 

Thongsripong 

et al. (2021) 

Vector-Borne 

Diseases 

Host–Vector 

Contact Rate 

Modeling 

Advocated inclusion of 

host–vector contact rate as 
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modeling, 

functional 

response theory 

 

IV. Mathematical Model of Optimal Control and Stability  

The mathematical modeling of optimal control and stability analysis in disease transmission systems is a key 

framework in epidemiology used to predict, control, and understand the spread of infectious diseases. These 

models are generally extensions of the classical SIR (Susceptible–Infected–Recovered) or SEIR (Susceptible–

Exposed–Infected–Recovered) frameworks, incorporating control variables that represent intervention strategies 

such as vaccination, treatment, quarantine, and awareness programs. The core aim of optimal control is to 

determine the most efficient way to minimize the number of infected individuals and the cost of interventions 

simultaneously over a specific period. 

Mathematically, consider a population divided into compartments 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡), denoting susceptible, 

infected, and recovered individuals, respectively. The total population 𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡). The basic SIR 

model is represented by a system of nonlinear differential equations: 

𝑑𝑆

𝑑𝑡
= 𝛬 − 𝛽𝑆𝐼 − 𝜇𝑆 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − (𝜇 + 𝛾)𝐼 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝜇𝑅 

Here, 𝛬 denotes the recruitment rate, μ\muμ is the natural death rate, 𝛽 is the transmission coefficient, and 𝛾 is 

the recovery rate. To incorporate optimal control, control variables such as 𝑢1(𝑡), 𝑢2(𝑡), and 𝑢3(𝑡) can be 

introduced to represent vaccination, treatment, and awareness, respectively. The modified system becomes: 

𝑑𝑆

𝑑𝑡
= 𝛬 − 𝛽(1 − 𝑢3)𝑆𝐼 − (𝜇 + 𝑢1)𝑆 

𝑑𝐼

𝑑𝑡
= 𝛽(1 − 𝑢3)𝑆𝐼 − (𝜇 + 𝛾 + 𝑢2)𝐼 

𝑑𝑅

𝑑𝑡
== 𝛾𝐼 + 𝑢1𝑆 + 𝑢2𝐼 − 𝜇𝑅 

The objective functional to be minimized can be expressed as: 

𝐽(𝑢1, 𝑢2, 𝑢3) = ∫ [𝐴𝐼(𝑡) +
1

2
(𝐵1𝑢1

2 + 𝐵2𝑢2
2 + 𝐵3𝑢3

2)]𝑑𝑡
𝑇

0
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where 𝐴 represents the cost associated with infection, and 𝐵𝑖  are the weights corresponding to the cost of applying 

controls. The goal is to find optimal controls 𝑢1
∗, 𝑢2

∗ , 𝑢3
∗  that minimize 𝐽 while satisfying the system dynamics and 

constraints 0 ≤ 𝑢𝑖(𝑡) ≤ 1. 

Using the Pontryagin’s Maximum Principle (PMP), the Hamiltonian function HHH is constructed to derive the 

necessary conditions for optimality. This leads to adjoint equations and transversality conditions that define the 

optimal control system. The PMP framework helps determine how the intensity and timing of control measures 

affect the disease progression. 

The stability analysis focuses on determining the behavior of the disease dynamics around equilibrium points — 

the disease-free equilibrium (DFE) and the endemic equilibrium (EE). The basic reproduction number, 𝑅0 =
𝛽𝑆0

𝜇+𝛾
 , 

plays a crucial role in understanding stability. If 𝑅0 < 1, the DFE is locally and globally asymptotically stable, 

meaning the disease will eventually die out. Conversely, if 𝑅0 > 1, an endemic equilibrium exists and the disease 

persists in the population. Local stability is analyzed through the Jacobian matrix linearized around equilibrium 

points, while Lyapunov functions are often used to assess global stability. Introducing optimal controls modifies 

the system dynamics and can reduce the effective reproduction number 𝑅𝑒, making it possible to drive the system 

toward a stable, disease-free state. Sensitivity and stability analyses of parameters such as 𝛽, 𝛾, and control rates 

uiu_iui help identify which interventions have the most significant impact on disease reduction. 

In summary, the integration of optimal control theory with stability analysis in disease transmission models 

provides a robust framework for designing and evaluating intervention strategies. It ensures that control measures 

not only reduce infection rates effectively but also maintain system stability under varying epidemiological and 

economic constraints, ultimately guiding public health decision-making toward sustainable disease eradication. 

The mathematical model of optimal control and stability analysis in disease transmission integrates 

epidemiological dynamics, control theory, and stability principles into a unified framework. It provides a scientific 

basis for implementing effective intervention policies by balancing health benefits and economic costs. The 

stability analysis ensures that once the disease is eradicated, it does not re-emerge, making such models powerful 

tools for long-term public health planning. Through optimal control, authorities can determine the most cost-

effective combination of vaccination, treatment, and awareness programs to maintain a stable, disease-free 

population while minimizing resource expenditure and societal impact. 

 

Fig. 1. Disease Transmission Dynamics under Optimal Control 
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This graph illustrates the time evolution of the susceptible (S), infected (I), and recovered (R) populations under 

optimal control measures such as vaccination, treatment, and awareness. The susceptible population gradually 

declines as vaccination and awareness reduce exposure, while the infected group initially rises but then drops 

sharply due to effective interventions and recovery efforts. The recovered population increases steadily, indicating 

successful disease management. The smooth convergence of all curves reflects the model’s stability and control 

effectiveness, demonstrating how optimal control strategies can reduce infection peaks and lead to a stable, 

disease-free equilibrium over time. 

 

Fig. 2. Impact of Control Intensity on Infection Level 

This graph shows the relationship between the intensity of control measures (𝑢) and the resulting infection level 

(𝐼). As control intensity increases from 0 to 1, infection levels decrease significantly, highlighting the effectiveness 

of combined vaccination, treatment, and awareness campaigns. The curve exhibits a nonlinear decay pattern, 

suggesting diminishing returns at very high control levels. This reflects real-world scenarios where moderate 

interventions can achieve substantial reductions in infection rates. The plot demonstrates that applying optimal 

control strategies can significantly reduce disease prevalence while balancing economic and resource constraints 

in epidemiological management. 

 

Fig. 3. Stability Analysis via Lyapunov Function Decay 
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This graph represents the decay of the Lyapunov function 𝑉(𝑡) over time, demonstrating the stability behavior of 

the disease transmission model. The exponential decline indicates that the system’s energy or perturbation from 

equilibrium decreases steadily, confirming the global asymptotic stability of the disease-free equilibrium. As time 

progresses, 𝑉(𝑡)) approaches zero, meaning the system converges to a steady state where infections no longer 

persist. This validates that under optimal control conditions, the disease transmission model remains stable even 

when subjected to minor disturbances, ensuring long-term disease eradication and equilibrium sustainability 

within the population. 

V.  Conclusion 

Mathematical models of disease transmission are powerful tools for predicting outbreaks and testing control 

measures. The review shows that combining optimal control methods with stability analysis improves 

understanding of how diseases behave over time. When the basic reproduction number (R₀) is less than one, 

disease spread can be stopped, while values above one need strong interventions. Including factors such as age, 

spatial patterns, and human behavior makes models more realistic. Overall, these models support public health 

decisions and help in creating effective strategies to control and prevent infectious diseases worldwide. 
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