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Abstract: This study explains how mathematical models help understand and control the spread of infectious
diseases. Through using optimal control and stability analysis, researchers can find how diseases grow, how fast
they spread, and what measures can stop them. Models like SEIR, SVIR, and SEIQR help study diseases such as
measles, malaria, dengue, and tuberculosis. These models show that factors like vaccination, human behavior, and
population movement affect transmission. Stability and control analysis help identify safe conditions where
diseases stop spreading. This research helps design better strategies for disease prevention and long-term public
health planning.
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I. Introduction

Mathematical modeling has become a cornerstone in understanding and mitigating infectious disease dynamics
through quantitative prediction, optimal control, and stability analysis. Over the last few years, significant
advancements have been made to refine the accuracy of these models and their applicability to real-world
scenarios. For instance, Alemneh and Belay (2023) developed an extended SVIRP measles transmission model to
assess the effects of indirect contact rates and interventions, verifying both global and local stability through the
Castillo-Chavez criterion. Similarly, Alhaj (2023) applied a deterministic malaria transmission model and
demonstrated forward bifurcation and equilibrium stability using the next-generation matrix approach. Fiatsonu
et al. (2023) emphasized the importance of host-vector relationships in Chagas disease, revealing dogs’ significant
role in transmission, while Hill et al. (2023) integrated behavioural heterogeneity into livestock models to analyze
how farmers’ vaccination behaviours affect outbreak control. Age-structured modeling by Li-Martin et al. (2023)
for dengue showed how demographic differences shape stability and transmission outcomes. Studies like
Maogelmose et al. (2022) and Abidemi and Aziz (2022) incorporated human population dynamics and vaccination
strategies to better reflect real epidemic processes. Recent contributions also highlight the necessity of spatial,
stochastic, and computational methods. Lin and Wen (2022) illustrated the role of spatial epidemiology in
mapping and predicting infection spread, while Pokharel and Deardon (2022) used Bayesian emulation techniques
for efficient inference in complex spatial models. Furthermore, Tyagi et al. (2021) combined SEIQR modeling
with deep learning (LSTM) for COVID-19 prediction, and Das et al. (2021) analyzed tuberculosis through
bifurcation and stability frameworks. These studies underscore the central role of optimal control and stability
analysis in understanding threshold conditions (Ro), equilibrium behavior, and intervention efficiency. They
provide a foundation for designing evidence-based health policies that adapt to heterogeneous, spatially dynamic,
and behaviorally influenced disease systems.
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1I. Review of related literature

Alemneh et al. (2023) described measles as one of the commonest communicable diseases responsible for about
2.6 million deaths per annum. Their work analysed the mechanism of measles transmission through discussing
indirect contact rate (spread between an infectious and a susceptible host) and by extending SEVIR model to
SVIRP. They calculated the disease-free equilibrium, derived the effective reproduction number (REff) and
resolute stability. The global stability of the disease-free equilibrium point was verified by using the Castillo—
Chavez stability criterion, and local stability (when REff 1 proved. Sensitivity analysis and numerical simulations
were conducted to investigate the effect of constraints on measles spread dynamics, showing that Indirect contact
rate made the most contribution in increasing disease outburst. The study also found that intervention and
treatment approaches have played a major role in mitigating the overall impact of measles on the community.

Alhaj et al. (2023) Stated that malaria was among the deadliest of diseases caused by Plasmodium-class parasites
and spread to humans through bites of female Anopheles mosquitoes. They developed a deterministic
mathematical model of malaria transmission between humans and mosquitoes. The basic reproduction number
((\mathcal{R} {0})) was obtained by the next-generation matrix method, and the stability of the equilibria was
established through (\mathcal{R}{0}) in order to show that a forward bifurcation occurred. They observed that
the malaria dies out if (\mathcal{R}0) was less than one, while it spreads when it is greater than one. Both the
local and global sensitivity analysis for (\mathcal{R}{0}) were conducted, while we implemented the model
simulation through Runge—Kutta fourth-order method in MATLAB. Besides, the influences of important
parameters were discussed and plotted. The results of the simulations agreed with those obtained by stability
analysis for (E{def}). The work also considered the effects of malaria control measures on crucial transmission
parameters and suggested how better to control, and ultimately eliminate, malaria transmission.

Fiatsonu et al. (2023) reported that Chagas disease, also known as American trypanosomiasis, was a zoonotic
vector-borne disease caused by the parasite Trypanosoma cruzi, which infected several mammalian species
throughout the Americas including people and canines. They performed a scoping review of mathematical models
investigating the role of dogs in T. cruzi transmission and found ten peer-reviewed studies that had explicitly
modelled dog-borne T. cruzi transmission dynamics. The authors also talked about the various modeling
approaches, parameters of transmission, pathways of disease spread and control measures analyzed in these
studies. In general, the modeling studies had shown that not only were dogs at high risk of becoming infected with
T. cruzi, but that they also played a major role in transmitting this parasite to humans. In addition, removal of
infected dogs from the household or frequent use of insecticides was identified as effective to decrease T. cruzi
infection for both humans and dogs. However, after suspension of insecticide spraying, T. cruzi infections in dogs
appeared to go back to pre-spraying levels. The study also pointed out the limitations and prospects for further
modelling studies to better understand Chagas disease transmission dynamics and control.

Hill et al. (2023) stressed the importance of human behaviours in controlling livestock disease outbreaks,
especially with respect to vaccination uptake. They added that conventional mathematical models that guided such
responses were often based on the assumption of homogeneous response to information among farmers. To tackle
this, the investigators considered how differences in farmers’ vaccination practice could be incorporated into
mathematical models. They constructed and used a computer interface to record the vaccination choices of 60
farmers in response to a simulated period of fast spreading disease that linked back to their
psychological/behavioural profiles. They conducted cluster analysis and determined consistent profiles of
heterogeneity in vaccination behaviour. By embedding such behavioural clusters within a mathematical model for
the spread of an infectious disease in a rapidly mixing livestock population, they investigated via computational
simulations how allowing for heterogeneity in behaviour would affect epidemiological and economic metrics.
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They found that, as compared to thematic profiles, such a homogenous farmer behavioural assumption resulted in
markedly different projected outbreak size, duration, and economic outputs.

Li-Martin et al. (2023) found that age presented as a main risk factor in vector borne infectious diseases, partially
because children depend on adults to protect themselves and were exposed less often to wear mosquitoes than
were adults who spent little time outdoors. To model this, they considered a dengue disease that stratifies the
human population into two compartments, as children and adults were more or less likely to be bitten by
mosquitoes. The basic reproduction number (R_0) of dengue was obtained through computing the next-generation
operator, and the local stability and global stability of the disease-free equilibrium were studied. A Lyapunov
functional method was used to obtain sufficient conditions for the global asymptotic stability of the endemic
equilibrium. It was also shown that the globally asymptotically stable of endemic equilibrium within feasible
region still holds when (R_0 > 1) by setting the period of infection for children equal to that of adults. In addition,
the model was analysed numerically by considering the parameter values that were taken from available literature
and to find out which parameters has a significant impact on variation of (R_0) using local sensitivity analysis
that can provide a more biological meaning over what it means in terms of changes in R_{0}.

Moegelmose et al. (2022) observed although more infectious disease models were accounting for demographic
host population dynamics, the modelling approaches and assumptions differed greatly. For that purpose, they
performed a systematic review to investigate how dynamic populations were incorporated in infectious disease
models and systematically searched PubMed and Web of Science for studies addressing transmission of infectious
diseases in dynamic host populations. According to the PRISMA checklist, they read studies identified through
the search and extracted data. A total of 46 articles with 53 dynamic population infectious disease models were
reviewed. Of those, 71% included the modelling of population dynamics either directly according to CCBMs or
IBMs and 29% applied population projections as external input. Fertility and mortality were predominantly age-
specific, or if specified, age-and-sex specific but 40% of the models used crude fertility ratios. Households were
included in 15% of the models, all but one being IBMs (with external population prospects). In addition, 17% of
the models we reviewed conducted a demographic sensitivity analysis. The most studies included all of fertility,
mortality, and migration explicitly as processes and representation at a population level was more common than
IBMs. The authors noted demographic factors other than age and sex were difficult to include in population models
and were therefore generally specific only to IBMs. Although these IBMs modelled families and social networks,
the degree of detail in demographic processes was comparable to that found in CCBMs. These common
assumptions were related to in closing by the study, which also highlighted some potential paths for model
enhancements.

Abidemi et al. (2022) reported that dengue (applying to as a mosquito-borne disease) had been endemic for
several months in Malaysia. They investigated the impacts of various vaccination scenarios alone and with
treatment and adulticide control on the population dynamics of dengue in Johor, Malaysia. First, they proposed a
compartmental model (a mass action one still with random vaccination distribution process) including the
vaccinated compartment. The model was encountered to be exhibiting backward bifurcation whether under the
conditions of perfect vaccination or in terms of imperfect vaccination. Data collected during the 2012 dengue
outbreak in Johor were used to estimate the basic reproduction number of the outbreak and perform a sensitivity
analysis of how individual model parameters affected dengue transmission and spread among population
members. The authors then constructed a deterministic model that incorporated vaccination as the control
parameter (with time-independent rates) together with treatment and adulticide interventions. Subsequent
simulations were conducted to evaluate the effects of alternative control tactics. Results revealed that stategies
adopted, can effectively reduce the transmission of dengue than with no control treatment and efficiency analysis
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demonstrated combined vaccination, treatment and adulticide controls was found to be the most efficient method
in preventing and controlling dengue in Johor, Malaysia.

Tresna et al. (2022) undertook a review of published papers on typhoid disease transmission models to determine
how S. typhi was transmitted between humans and vectors under diverse scenarios of interventions aimed at
containing the spread of typhoid. The purpose of this study was to determine the categories of models that were
developed, describe current studies and analyze interventions that are included with these models. A
comprehensive search and review were conducted by searching Dimension, Scopus, and ScienceDirect databases
for research papers published from 2013 to 2022 on typhoid fever transmission using compartmental mathematical
models. A total of 111 different articles were initially obtained from this search process of which 23 satisfied the
inclusion criteria as it appeared in the defined context of the terms searched. These articles were reviewed to
determine their model type and the interventions that they modelled. The interventions found were collated to
serve as an overview for possible aspects in the model development. The review highlighted the role of
mathematical models in dissecting and elucidating typhoid transmission dynamics following interventions. The
investigators noted that the next iterations of typhoid models could be enriched by inclusion of direct and indirect
interventions among humans.

Hiram Guzzi et al. (2022) pointed out that the regulation of contagious diseases was not only an important area
of research, but also has a clinical and political implication. They highlighted how this area engaged with a range
of computational techniques such as ordinary differential equations, stochastic simulation frameworks and graph
theory, in combination with interaction data at scales from molecular to social interactions to understand the
emergence and spread of disease. Covid-19 was mentioned as the best example for how these models could help
us to avoid harsh lockdowns by providing potentially effective options, like optimal vaccine prioritization.
Particular emphasis was placed on graph-based epidemiological models, which were found to be a powerful
instrument for improving the control of disease. They included examples for the COVID-19 pandemic, and
demonstrated how such methods might be further extended to other infectious diseases so as to better capture
disease diffusion dynamics.

Dankwa et al. (2022) pointed out that in the absence of studies confirming model identifiability, findings from
infectious disease transmission models could be flawed and to potentially misleading recommendations. They
said that structural identifiability analysis verifies if there are unique solutions for all unknown model parameters
based on the structure of the model. In their work, they explored the structural identifiability of various
deterministic compartmental models for infectious disease transmission by considering impact of distinct data
types used as model outputs and its implications on identifiability of unknown parameters which included initial
conditions. The model configurations were defined, each with unique space-partitioning structure and output data
types (the combination of internal MCML diversity matrix (Bhattacharyya et al., 2014), SIMPLIFICATION I: the
reduction of differential scattering coefficient at frequent frequencies (Devore et al., 1988; Cuccia et al., 2006)
and L1, or absolute value loss regularization). Authors investigated four compartmental model structures and three
types of data which are widespread used in disease surveillance, incidence, prevalence and detected vector counts.
They showed that the structural identifiability of some parameters changed with output type, and models using
several output types had generally more parameters identifiable than those only using one. The investigation
emphasised the importance of data types in understanding a key element of inference when employing
compartmental infectious disease transmission models.

Pokharel et al. (2022) articulated that mechanistic models of infectious diseases (MDs) were indispensable for
comprehending the spatiotemporal spread dynamics. While it would be preferable if these models could
incorporate covariate information and longitudinal measurement of each individual’s infection status, complete
data were generally not available in practice because the timing of infection was typically unknown. Other studies
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have used, as a solution to censoring or missing data, Bayesian data augmented Markov chain Monte Carlo
(MCMC) methods but these were computationally intensive for large disease systems. In this case, the authors
suggested two approximate inference methodologies according to emulation-based approaches in order to reduce
computational cost. Both approaches worked in the context of a Bayesian MCMC, however instead of using
likelihood function-which was slow to compute-they relied on a Gaussian process-based approximation. The first
approach entailed building an emulator of the discrepancy between the summary statistics of simulated and
observed epidemic data, whereas the second one created an emulator for an importance sampling-based likelihood
approximation. The results of their study have proved both methods were computationally efficient relative to
standard Bayesian MCMC to infer patterns of transmission in complex infectious disease systems. Furthermore,
they also found that the importance sampling-based method gives better performance.

Lin et al. (2022) reported that spatial factors, e.g., distances between susceptible hosts and shared environments
or contaminated materials, and infected animal species, were associated with human directly and indirectly
transmitted infectious diseases. They stressed the importance of spatial concepts for the comprehension and
control of emerging infectious diseases. With improvement in computing capability and statistical methods, there
were new possibilities for visualising and analysing data on disease spatial patterns. In the review, they described
frequently used spatial and spatio-temporal methods of infectious disease management in four parts: (1)
visualization, (2) the overall clustering method, (3) hotspot detection approaches, and (4) risk factor analysis.
Sections 1 - 3 considered both point and aggregated data (point & aggregate refer to individual- and population-
level data respectively, while the final section was on spatial regression methods adjusting for neighbourhood
effects and spatial dependence. The scholars emphasized that analysing space-time variation of the spread of
diseases could improve surveillance systems, assist in hypothesis generation and verification, and also facilitate
designing preventive and control strategies. The authors also underscored the relevance of ethical considerations
and judgements about data quality prior to implementing spatial-temporal analyses, with proposed future research
focusing on improving the accuracy of differential global positioning system processes and reducing the
uncertainty associated with Bayesian estimation methods.

Becker et al. (2021) described the unexpected rise of using infectious disease dynamic transmission models
during the COVID-19 pandemic for public health decision-making and policy development. They noted that such
models served as a structure through which the transmission dynamics could be systematically investigated, and
were capable of making both short-term and long-term predictions by incorporating assumptions on biological,
behavioural, and epidemiological processes driving spread, burden (of disease), and surveillance. The authors
further stated that in the context of COVID-19 and other communicable disease emergencies, such models
provided valuable projections of possible disease progression, helped to examine intervention impacts, and
estimated important transmission parameters. However, they also acknowledged that the fast-tracking of model
development, evaluation, and deployment during times of emergency shed light on the need to understand in detail
the strengths and weaknesses of these approaches. The review described how infectious disease dynamic models
have developed over time, the necessity of robust testing and validation, and how models can be merged with
reality to guide public health action. Rather than provide an exhaustive historical review, the paper emphasised
how through purposeful embedding with policy and practice we could evolve public health modelling and improve
the efficacy and robustness of such interventions in ongoing pandemics, as well as in future ones.

Buckee et al. (2021) argued that social and cultural drivers shaped almost every aspect of infectious disease spread
within the human population, including the ability to detect, comprehend, respond to epidemics. For contact-
mediated infections, however, they wrote that the spread of a pathogen depended on human contacts and that
kinship, household organization, and broader patterns of social organization—what ultimately determined the
dynamics of epidemics. Moreover, social, economic, and cultural settings influenced patterns of exposure; seeking
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behaviour; outcome to infection; rates of diagnosis and reporting; the uptake of interventions. These social aspects
of epidemiology were noted as difficult to measure (which therefore restricts the transferability of modelling
frameworks into policy application), but with growing data sources on human behaviour (e.g., from mobile
devices and digital technologies) now increasingly being used as surrogates for behavioural drivers of disease
spread. But they warned that it would take a lot more work to confirm and responsibly use these data for policy
making. The research also implied that incorporating local knowledge in the construction of model structures as
well as the interpretation of new behavioural data streams might generate more policy-relevant infectious disease
models and support building strong, generalizable theories connecting human behaviour to disease dynamics.

Mousa et al. (2021) carried out a systematic review and meta-analysis of the effects of contact and mixing
between populations on transmission of respiratory pathogens including SARS-CoV-2. The analysis was based
on data from 28,503 participants and 413,069 contacts in 27 surveys that had compared contact patterns by income
strata (low-, middle- and high-income countries) considering number of contacts, duration of contacts, location,
and physicality. Contact rates were shown to decrease with age in higher-income and increase in low-income
settings, where older individuals come into contact often with younger people through extensive living
arrangements across households of multiple generations. More contacts had taken place in the home in low-
income settings, and work and school related more frequently in high income settings.

Kirkeby et al. (2021) presented the application of stochastic and network ow computer models for veterinary
science with simulations to predict disease dynamics, evaluate control strategies, and compare results against eld
data. They concentrated on models representing single individuals, and gave a tangible introduction to how such
a model is made and used. The paper describes the main steps to the design of such models both before, during
and after programming. It highlighted the need for verification (to make sure that model behaves as expected),
validation (validate the results of the model) and convergence analysis to guarantee stability of models that
simulates endemic diseases. The authors also emphasized the use of sensitivity analysis to assess the impacts of
parameter uncertainty. They also provided code samples to help new researchers realize their models, and we’re
kept them updated with the latest disease spread modelling literature.

Tyagi et al. (2021) studied the dynamics of infectious disease transmission by establishing a theoretical
mathematical model in terms of the SEIQR (Susceptible-Exposed-Infected-Quarantined-Recovered). the study
was designed to investigate into disease dynamics and control by proving the positivity and boundedness of the
model solutions, computing basic reproduction number to draw stability analysis of equilibria for epidemiological
significance. For validation and parameter estimation, the authors then used their model on actual reported real
COVID-19 cases in Russia and India. They also introduced a memory-based Long Short-Term Memory (LSTM)
model to capture temporal relationships from COVID-19 time series and predict future developments. The results
of the SEIQR mathematical model and the LSTM model were further compared to obtain the more dependable
forecasting of disease development.

Retkute et al. (2021) proposed a novel statistical approach utilizing the Adaptive Multiple Importance Sampling
(AMIS) algorithm to facilitate modelling of infectious disease transmission dynamics. The AMIS algorithm,
making use of samples from earlier iterations in an iterative fashion to increase time efficiency, was extended to
perform a simultaneous sampling over different targets by modifying the adaptation focus at each iteration. This
change produced a substantial gain in sampling efficiency over the basic AMIS. The model integrated outputs of
a geostatistical model of the prevalence, incidence or relative risk for an infectious disease and forecast these
measures forward in time using a mathematical transmission model. The improved algorithm was validated
through four specific case studies - ascariasis in Ethiopia, onchocerciasis in Togo, HIV in Botswana and malaria
Democratic Republic of Congo-pre-amble, illustrating how the novel approaches improve disease modelling and
forecasting.
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Das et al. (2021) considered tuberculosis as a significant global health challenge and developed an SEIR-type TB
transmission mathematical model with time-dependent boundaries using the proposed MCA framework. The
entire population was partitioned into four classes according to the biological status, and a model of compartmental
phases was used to study the effects of various factors on the infection-free and endemic equilibrium points. The
analysis showed that the TB model was locally and globally asymptotically stable at the disease-free equilibrium
when the basic reproduction number is < 1, while it has a new endemic equilibrium > 1. Acentermanifold theory
bifurcation analysis showed the presence of a forward bifurcation, thus exploring the dynamic behaviour of the
model and its conditions for TB persistence and/or extinction.

Thongsripong et al. (2021) stressed the importance of host—vector contact (including mosquito bites) in driving
vector-borne disease (VBD) transmission, and criticized that studies based on traditional method may concentrate
on vector density simply, while ignoring the behavior of host-mosquito contact. Their review was focused on
synthesis of current knowledge and developing a unified theoretical construct that included host—mosquito contact
rate, blood-feeding rate, and per capita biting rate from both biological and mathematical viewpoints. The results
also illustrated that such contact rates could be significantly different depending on mosquito and host attributes,
opposing to the classical view of a fixed daily biting rate based on gonotrophic cycle. Instead, it suggested
alternative ecological models by means of functional response, blood index, forage ratio, and ideal free
distribution. The authors suggested that it is appropriate to consider host—vector contact as an important integrative
variable in mechanistic models of disease as its and strongly affects the transmission dynamics. They suggested
that formal parameterization of contact rate models having empirical support would improve the understanding
of ecological and behavioral factors contributing to VBD disease emergence, social behavior theory, pattern
formation in spatial systems as well as disease prevention and control strategies.

I11. Findings from Related Reviews
Author(s) & | Disease Studied | Model / Approach | Key Findings Tools / Methods
Year Used Used
Alemneh et al. | Measles Extended SEVIR — | Indirect  contact  rate | Sensitivity
(2023) SVIRP Model contributed  most  to | analysis,
outbreaks; global & local | numerical
stability =~ proven using | simulations
Castillo-Chavez criterion;
interventions reduced
transmission.
Alhaj et al. | Malaria Deterministic Forward bifurcation at | Next-generation
(2023) mathematical Ro=1; malaria dies out | matrix, = Runge-
model (Human— | when Ro<1; validated via | Kutta (MATLAB)
Mosquito) simulation; control
measures reduce
transmission.
Fiatsonu et al. | Chagas Disease | Scoping Review of | Dogs play major role in | Literature
(2023) (T. cruzi) Mathematical human transmission; | synthesis,
Models insecticide spraying | parameter analysis
effective but temporary;
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highlighted data/model
gaps.
Hill et al. | Livestock Behavioural- Heterogeneity in farmers’ | Cluster analysis,
(2023) Disease Cluster vaccination behaviour | simulation
Mathematical alters  outbreak  size, | modeling
Model duration, and economics;
human behaviour critical.
Li-Martin et | Dengue Age-Structured Age is a key risk factor; Ro | Lyapunov
al. (2023) Compartmental and stability depend on | functional method,
Model children—adult exposure; | sensitivity analysis
global stability confirmed
for Ro>1.
Maogelmose et | Infectious Systematic Review | 71% of models included | PRISMA protocol,
al. (2022) Diseases of Dynamic | population dynamics; | systematic review
(General) Population Models | fertility/mortality age-
specific; demographic
sensitivity often missing.
Abidemi et al. | Dengue Compartmental Combined interventions | Sensitivity &
(2022) (Malaysia) Model with | (vaccine + treatment + | efficiency
Vaccination, adulticide) most effective; | analysis,
Treatment & | backward bifurcation | simulations
Adulticide observed.
Tresna et al. | Typhoid Fever Review of | Identified 23 valid models | Database review
(2022) Compartmental (2013-2022); emphasized | (Scopus,
Models inclusion of direct & | ScienceDirect)
indirect human
interventions in  future
models.
Hiram Guzzi | Contagious Computational & | Graph-theoretical models | ODEs, stochastic
et al. (2022) Diseases Graph-Based effective  for  control; | simulations, graph
COVID-19 Modeling illustrated how network | theory
models improve
intervention strategies.
Dankwa et al. | Infectious Identifiability Demonstrated data type | Structural
(2022) Diseases Analysis of | affects parameter | identifiability,
(General) Compartmental identifiability; multiple | MCML matrix
Models outputs increase
identifiable parameters.
Pokharel et al. | Infectious Bayesian Data- | Introduced efficient | Bayesian MCMC,
(2022) Diseases Augmented Gaussian  process-based | Gaussian Process
(General) inference; reduced | Emulator
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Mechanistic computational cost;
Models importance sampling
outperformed.
Lin et al. | Human & Animal | Spatial and Spatio- | Highlighted  value  of | Spatial regression,
(2022) Infectious Temporal Models spatial analysis for disease | hotspot detection,
Diseases control; ethics and data | GIS
quality emphasized for
GPS-based modeling.
Becker et al. | COVID-19 & | Dynamic Models guided public | Epidemiological
(2021) Communicable Transmission health policy; stressed need | modeling, policy
Diseases Modeling Review for validation and | analysis
transparent model—policy
integration.
Buckee et al. | Infectious Social-Behavioural | Social & cultural factors | Behavioural
(2021) Diseases Epidemiological shape  disease  spread; | modeling, data
(General) Modeling behavioural data from | analytics
mobile devices can
enhance predictive models.
Mousa et al. | Respiratory Meta-analysis  of | Contact rates vary by | Meta-analysis,
(2021) Pathogens Contact and Mixing | age/income; contact surveys
(SARS-CoV-2) Patterns intergenerational  contact
drives transmission in low-
income settings.
Kirkeby et al. | Veterinary Stochastic & | Emphasized model | Simulation
(2021) Infectious Network Flow | verification & validation; | modeling, network
Diseases Models used sensitivity analysis for | analysis
parameter uncertainty;
provided code templates.
Tyagi et al. | COVID-19 SEIQR Model + | Combined theoretical and | SEIQR modeling,
(2021) LSTM Prediction ML model; validated on | LSTM (Deep
India & Russia data; LSTM | Learning)
improved forecasting
accuracy.
Retkute et al. | Ascariasis, Adaptive Multiple | Enhanced sampling | AMIS algorithm,
(2021) Onchocerciasis, Importance efficiency; integrated | geostatistical
HIV, Malaria Sampling (AMIS) geostatistical & | modeling
transmission models;

validated on 4 disease case
studies.
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Das et al. | Tuberculosis SEIR-type Model | Model globally stable | MCA framework,

(2021) (TB) with Time- | when  Ro<l;  forward | bifurcation
dependent bifurcation when Ro>1; | analysis
Boundaries explored persistence and

extinction conditions.

Thongsripong | Vector-Borne Host—Vector Advocated inclusion of | Ecological
et al. (2021) Diseases Contact Rate | host—vector contact rate as | modeling,
Modeling major driver; proposed | functional

functional response & | response theory
blood index models.

Iv. Mathematical Model of Optimal Control and Stability

The mathematical modeling of optimal control and stability analysis in disease transmission systems is a key
framework in epidemiology used to predict, control, and understand the spread of infectious diseases. These
models are generally extensions of the classical SIR (Susceptible—Infected—Recovered) or SEIR (Susceptible—
Exposed—Infected—Recovered) frameworks, incorporating control variables that represent intervention strategies
such as vaccination, treatment, quarantine, and awareness programs. The core aim of optimal control is to
determine the most efficient way to minimize the number of infected individuals and the cost of interventions
simultaneously over a specific period.

Mathematically, consider a population divided into compartments S(t), I(t), and R(t), denoting susceptible,
infected, and recovered individuals, respectively. The total population N (t) = S(t) + I(t) + R(t). The basic SIR
model is represented by a system of nonlinear differential equations:

ds
E=A—B51—u5
dl
prial il CR a0l
dR
E=y1—uR

Here, A denotes the recruitment rate, p\muy is the natural death rate, £ is the transmission coefficient, and y is
the recovery rate. To incorporate optimal control, control variables such as u,(t),u,(t), and u5(t) can be
introduced to represent vaccination, treatment, and awareness, respectively. The modified system becomes:

S
E= A= B —uz)SI — (u+upS
dl

7 = BA—u)SI = (u+y +w)

dR
a==y1+u15+u21—uR

The objective functional to be minimized can be expressed as:

T

1
a2, 05) = [ TAICE) + 5 (B + By + Byude
0
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where A represents the cost associated with infection, and B; are the weights corresponding to the cost of applying
controls. The goal is to find optimal controls uj, u3, uz that minimize J while satisfying the system dynamics and
constraints 0 < u;(t) < 1.

Using the Pontryagin’s Maximum Principle (PMP), the Hamiltonian function HHH is constructed to derive the
necessary conditions for optimality. This leads to adjoint equations and transversality conditions that define the
optimal control system. The PMP framework helps determine how the intensity and timing of control measures
affect the disease progression.

The stability analysis focuses on determining the behavior of the disease dynamics around equilibrium points —

the disease-free equilibrium (DFE) and the endemic equilibrium (EE). The basic reproduction number, R0 = 5% ,

plays a crucial role in understanding stability. If RO < 1, the DFE is locally and globally asymptotically stable,
meaning the disease will eventually die out. Conversely, if RO > 1, an endemic equilibrium exists and the disease
persists in the population. Local stability is analyzed through the Jacobian matrix linearized around equilibrium
points, while Lyapunov functions are often used to assess global stability. Introducing optimal controls modifies
the system dynamics and can reduce the effective reproduction number Re, making it possible to drive the system
toward a stable, disease-free state. Sensitivity and stability analyses of parameters such as 3, y, and control rates
uiu_iui help identify which interventions have the most significant impact on disease reduction.

In summary, the integration of optimal control theory with stability analysis in disease transmission models
provides a robust framework for designing and evaluating intervention strategies. It ensures that control measures
not only reduce infection rates effectively but also maintain system stability under varying epidemiological and
economic constraints, ultimately guiding public health decision-making toward sustainable disease eradication.

The mathematical model of optimal control and stability analysis in disease transmission integrates
epidemiological dynamics, control theory, and stability principles into a unified framework. It provides a scientific
basis for implementing effective intervention policies by balancing health benefits and economic costs. The
stability analysis ensures that once the disease is eradicated, it does not re-emerge, making such models powerful
tools for long-term public health planning. Through optimal control, authorities can determine the most cost-
effective combination of vaccination, treatment, and awareness programs to maintain a stable, disease-free
population while minimizing resource expenditure and societal impact.

Disease Transmission Dynamics under Optimal Control
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Fig. 1. Disease Transmission Dynamics under Optimal Control
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This graph illustrates the time evolution of the susceptible (S), infected (I), and recovered (R) populations under
optimal control measures such as vaccination, treatment, and awareness. The susceptible population gradually
declines as vaccination and awareness reduce exposure, while the infected group initially rises but then drops
sharply due to effective interventions and recovery efforts. The recovered population increases steadily, indicating
successful disease management. The smooth convergence of all curves reflects the model’s stability and control

effectiveness, demonstrating how optimal control strategies can reduce infection peaks and lead to a stable,
disease-free equilibrium over time.

Impact of Control Intensity on Infection Level
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Fig. 2. Impact of Control Intensity on Infection Level

This graph shows the relationship between the intensity of control measures (1) and the resulting infection level
(I). As control intensity increases from 0 to 1, infection levels decrease significantly, highlighting the effectiveness
of combined vaccination, treatment, and awareness campaigns. The curve exhibits a nonlinear decay pattern,
suggesting diminishing returns at very high control levels. This reflects real-world scenarios where moderate
interventions can achieve substantial reductions in infection rates. The plot demonstrates that applying optimal

control strategies can significantly reduce disease prevalence while balancing economic and resource constraints
in epidemiological management.

Stability Analysis via Lyapunov Function Decay
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Fig. 3. Stability Analysis via Lyapunov Function Decay
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This graph represents the decay of the Lyapunov function V (t) over time, demonstrating the stability behavior of
the disease transmission model. The exponential decline indicates that the system’s energy or perturbation from
equilibrium decreases steadily, confirming the global asymptotic stability of the disease-free equilibrium. As time
progresses, V(t)) approaches zero, meaning the system converges to a steady state where infections no longer
persist. This validates that under optimal control conditions, the disease transmission model remains stable even
when subjected to minor disturbances, ensuring long-term disease eradication and equilibrium sustainability
within the population.

V. Conclusion

Mathematical models of disease transmission are powerful tools for predicting outbreaks and testing control
measures. The review shows that combining optimal control methods with stability analysis improves
understanding of how diseases behave over time. When the basic reproduction number (Ro) is less than one,
disease spread can be stopped, while values above one need strong interventions. Including factors such as age,
spatial patterns, and human behavior makes models more realistic. Overall, these models support public health
decisions and help in creating effective strategies to control and prevent infectious diseases worldwide.
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