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ABSTRACT 

Using unlabeled images, Self-Supervised Learning has evolved into a common method for learning image 

representations. Still, its use in medical picture analysis is not very well studied. In this study, we present a self-

supervised Image Transformer that is led by saliency based on fundus pictures to grade Diabetic Retinopathy. 

Our method especially uses saliency maps in Self-Supervised Learning to direct the pre-training process using 

knowledge within a given domain. We particular suggest Two saliency-guided techniques for learning activities 

inside Self-Supervised Image Transformer: (1) Saliency-guided contrastive learning: To reduce. Unnecessary 

patches derived from momentum-updated key encoder input sequences, we utilize saliency maps of fundus 

pictures within conjunction with momentum contrast. As a result, the encoder for queries is directed to learn 

significant features from the prominent regions that the key encoder has focused on. (2) Saliency segmentation 

prediction: The query encoder is motivated to preserve detailed information in the acquired representations by 

being trained to predict saliency maps.  Using four publicly accessible fundus imaging datasets, we do out 

comprehensive investigations. The efficiency of the representations learned through self-supervised Image 

Transformer is demonstrated by our results, which demonstrate that Self-Supervised Image Transformer 

performs noticeably better than a number of cutting-edge Self-Supervised Learning techniques across all 

datasets and evaluation circumstances. 
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1. Introduction 
The primary etiology of working-age blindness individuals in cultivated nations [1] is a serious complication of 

diabetes, diabetic retinopathy affects the eye's blood vessels and can ultimately cause irreversible vision damage 

loss if treatment is delayed. Fundus pictures are useful in identifying this disorder because they show particular 

biomarkers such as exudates, hemorrhages, microaneurysms, and retinal neovascularization [2]. But early 
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symptoms of Diabetic Retinopathy are sometimes subtle and hard to see, and even for seasoned professionals, 

screening is becoming more and more challenging as the number of diabetes patients rises. Automatic 

techniques to help with Diabetic Retinopathy detection are therefore desperately needed, particularly in places 

with little healthcare resources [3,45]. Convolutional Neural Networks which are extensively used in deep 

learning, have made major advancements in Diabetic Retinopathy detection over the last decades Diabetic 

Retinopathy grading is mechanized using this [4,41]. Diagnosing Diabetic Retinopathy can be challenging 

because the condition is silent and has no early warning indicators, making early detection challenging [44]. 

Historically, the diagnosis has been made by skilled medical professional’s manually reviewing and assessing 

Digital Fundus Photography photographs [5, 43]. Depending on the amount of patients that require evaluation 

and the doctors' availability, this process may take several days. In addition, different doctors may get different 

results, and a doctor's accuracy greatly depends on their experience. Additionally, the technology and 

knowledge required may be inadequate in many areas with high Diabetic retinopathy is a widespread condition, 

affecting millions globally. Notably, convolutional neural networks (CNNs) have recently achieved 

breakthrough performance in medical imaging and other computer vision tasks 

 

2.  Literature Review 
A. Deep Learning for DR Grading  

The International Clinical Diabetic Retinopathy Scale divides the condition into four progressive stages: mild, 

moderate, and severe non-proliferative DR (NPDR), followed by the most advanced stage, proliferative DR 

(PDR). Clinicians use this classification system to assess disease progression and guide treatment decisions (0 is 

normal). [6]. Fundus imaging can identify biomarkers associated with DR, such as Hemorrhage, Key signs like 

exudates, microaneurysms, and retinal neovascularization can indicate diabetic retinopathy. To detect these 

markers, researchers are now using supervised deep learning approaches [8,42] have been more popular in 

recent years for Diabetic Retinopathy grading using fundus pictures. Because of their capacity to learn high-

level features successfully, Convolutional Neural Networks are frequently used as the feature extraction module 

in these methods [9]. 

Recently, computer vision methods have become a go-to solution for medical image analysis, demonstrating 

remarkable accuracy in image identification applications [10,11] found that Vision Transformers are 

competitive, if not superior to, Convolutional Neural Networks in Diabetic Retinopathy grading, particularly for 

extensive datasets. Notwithstanding their potential, the application of Vision Transformers in medical imaging 

analysis remains restricted, owing to an absence of adequately annotated data and the fact that Vision 

Transformers have yet to be completely investigated. In our study, we suggest a framework for self-supervised 

learning for Vision Transformers to improve Diabetic Retinopathy grading by better using unannotated fundus 

pictures. 

 

B. Self-supervised Learning in Natural Images  

Self-supervised learning has attained significant achievement using computer vision. [12]. A popular in self-

supervised learning, one common approach is to design a pretext task—an artificial challenge that helps the 

model learn meaningful representations from unlabeled data The key idea behind self-supervised learning? 

Create a pretext task that forces the model to learn useful features on its own that leverages the image's own 

information as a supervisory signal [13]. This challenge contributes to the training of neural network - an AI 

system modeled after the human brain - to automatically discover patterns Meaningful visual depictions. One of 

the most prevalent instances of prejudice used Techniques for self-supervised learning has revolutionized 

computer vision by allowing AI systems to learn from images without human annotations focuses on 

discriminating each Image by optimizing the congruence of representations from several enlarged perspectives 

of the identical image. 

MoCo[14] and SimCLR[15] are at the forefront of instance discrimination techniques. MoCo, for example, 
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compares utilizing the method uses embedded features from a trained encoder to build a dynamic representation 

dictionary, which is continuously updated via a momentum encoder. In contrast, SimCLR compares images in 

batches. MoCo-v3 improves MoCo's performance for self-supervised vision transformers[16]. Another famous 

method is DINO[17], which employs self-distillation to train a Vision Transformers, where a student model 

learns to predict the feature representations generated by a momentum-based 

While these algorithms excel at natural picture categorization, some studies have noted their reliance on global 

features, which may restrict their capacity to catch fine-grained details. To solve this, a new Self-supervised 

learning paradigm called as masked image modeling has gained traction[18], notably among Vision 

Transformers. Masked Autoencoder, for example, masks random regions of an analyze and develops a model to 

rebuild it these concealed areas. Nevertheless, linear assessment and k-nearest neighbors categorization 

demonstrate that such approaches are less effective in tasks requiring strong discriminative representation 

learning. Our goal is to create a network that collects both Fundus images contain both global and discriminative 

traits, as well as local and fine-grained data.  

 

C. Self-supervised Learning in Medical Images  

Annotating large-scale medical picture datasets is extremely expensive[19], which has prompted extensive study 

into self-supervised learning approaches for medical imaging, with a focus on ophthalmic image analysis [20] 

used OCT data to Linear evaluation with k-nearest neighbors classification to predict retinal thickness derived 

from fundus examination. Similarly, [21]. Created a self-supervised learning approach for retinal disorder 

diagnosis that multimodal data. In previous work, we proposed a lesion-based contrastive learning strategy in 

which lesion patches are used provides input to help the network get additional discriminative characteristics for 

DR grading [22]. Other research in medical imaging includes PCRL, which enhances representation learning 

Reconstructing various settings to recover from contrastive loss; and DiRA[23], which integrates We’ve 

developed a unified approach that combines three powerful learning techniques—discriminative, restorative, 

and adversarial training—into one cohesive system. Our current work, the Saliency-guided Self-supervised 

Image Transformer (or SaSIT for short distinguishes itself by leveraging prominence to guide Saliency-guided 

self-supervised Image Transformer training. Our Saliency-guided Self-supervised Image Transformer (or 

SaSIT) introduces two novel saliency-based learning objectives that enhance Vision Transformers' capabilities 

model in learning representations enhanced with DR-related properties. 

 

3. Dataset 
3.1 MESSIDOR and MESSIDOR-2  

The MESSIDOR dataset [34] comprises 1,158 images depicting the color of the retinal fundus collected from 

three different ophthalmology departments. Images were captured with a camera mounted on a nonmydriatic 

retinograph in the Under Identical Setting mode, and high resolution pixels were used. Figure 1 illustrates some 

of these photos. The MESSIDOR-2 dataset [35] extends on this by includes 1,648 more retinal images taken 

with a camera in identical situations. Table 1 lists pictures of varied resolutions from both databases. 

 
Figure 1: depicts various fundus images from the MESSIDOR and MESSIDOR-2 collection datasets 
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3.2 E-Ophtha 

The collection of data provided in [36] contains 381 compressed retinal pictures, of which 148 reveal 

microaneurysms and 233 are categorized as healthy. These photos were gathered from more than 15 evaluation 

sites in South India. Unlike many other datasets, it does not have predetermined training and testing sets, 

making its application more difficult. It is one of the most complex publicly available datasets, with a wide 

range of image quality and a high pixel resolution. Figure 2 shows a selection of fundus photos from the E-

ophtha collection 

 
Figure 2: depicts various fundus images from the E-ophtha collection datasets 

 

3.3 DIARETDB0 and DIARETDB1  

The DIARETDB0 dataset [37] comprises 125 chromatic fundus photographs, 25 of which are standard and 100 

of which show evidence Common signs of diabetic retinopathy (DR) include hard exudates (EX), soft exudates, 

microaneurysms (MA), and hemorrhages (HM and neovascularization. All photos have a resolution of pixels. 

Meanwhile, the DIARETDB1 dataset [38] consists of 79 retinal pictures captured using a digital fundus camera. 

These photographs are taken from real-world circumstances, thus they are ideal for assessing the overall success 

this set of images is commonly used for diagnostic purposes and is often known as 'calibration level 0 fundus 

images. Figure 3 displays instances from the DIARETDB0 and DIARETDB1 databases 

 
Figure 3: depicts various fundus images from the DIARETDB0 and DIARETDB1 collection datasets 

  

3.4 STARE  

The dataset consists of high-resolution retinal images captured using a fundus camera [39]. It contains 380 

images covering 14 different eye conditions, including emboli, cilio-retinal artery occlusion, branch retinal vein 

occlusion, central retinal vein occlusion (CRVO), hemi-CRVO, arteriosclerotic retinopathy, hypertensive 

retinopathy, Coat's disease, macroaneurysm, as well as both background and proliferative diabetic retinopathy 

(DR and PDR). Examples of these fundus images from the STARE dataset are shown in Figure 4. 

 
Figure 4: depicts various fundus images from the STARE collection datasets 
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3.5 IDRID  

This dataset includes 546 photos depicting a variety of clinical situations associated with diabetic retinopathy. 

All photos have a high pixel resolution and are oriented around the macula. Medical specialists thoroughly 

reviewed and graded Each image was graded on a scale from 0 (normal) to 4, indicating the severity of diabetic 

retinopathy (DR) Figure 5 depicts representative fundus photos from the IDRID collection. 

 

Figure 5: depicts various fundus images from the IDRID collection dataset. 

 

3.6 UoA-DR  

The creation of the UoA-DR dataset by the University of Auckland as part of their endeavors to identify diabetic 

retinopathy (DR) using an autonomous system. Three Indian medical facilities—we collaborated with three 

major eye care centers: Dr Agarwal’s Eye Hospital, L.V.Prasad Eye Institute, and Eye Care Hyderabad Super 

Specialty Eye Hospital —cooperated to develop this dataset. Fundus cameras were used by the ophthalmologists 

at these institutes to take retinal photographs of their patients. With the pixel resolution that this camera 

provides, 250 excellent JPEG photographs are included in the collection. Three types of pictures are 

distinguished: proliferative DR (PDR), nonproliferative DR, and healthy. Examples of fundus photos from the 

UoA-DR dataset are shown in  

 

 
Figure 6: depicts various fundus images from theUoA-DR collection dataset 

 

3.7 EyePACS 

This dataset contains over 88,330 high-resolution retinal images captured under diverse imaging conditions. 

Each Participants provided two images: one for each eye (left and right) these photographs were shot with 

varied camera types and sizes, which may explain why the left and right eye images appear differently. Figure 7 

displays a selection of photos from the EyePACS dataset. 

The dataset is imbalanced, with normal photos categorized as "0" accounting for the bulk, whereas images 

exhibiting proliferative diabetic retinopathy (PDR) are uncommon. Figure 12 depicts an example of the fundus 

images from the EyePACS dataset. Table 1 presents an overview of all datasets used. Notably, 15 fundus 

pictures were eliminated from the analysis since there was no circular mask found. 

We segmented the EyePACS dataset split into 79,497 training images and 8,833 test images, following the 

methodology described in references [26,32] patients with diabetic retinopathy (DR) were classed as having a 

DR stage of 2 to 4, which the dataset covered moderate, severe, and proliferative DR stages. We consolidated 

images originally labeled 0 ('normal') and 1 ('no detectable DR') into a unified 'normal' category (label 0) while 

those labeled 2, 3, and 4 were classed as "DR" and relabeled as 1. We used several techniques to handle the 
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uneven distribution of data we used a class-weight strategy that accounts for the asymmetry in error costs during 

training of models with the EyePACS dataset. 

In addition, we utilized the MESSIDOR datasets for detection purposes [46]. Existence of DR-related features 

such as exudates (Ex), hemorrhages (HM), and microaneurysms (MA), using the approaches. It should be noted 

that this study does not address the for detecting diabetic macular edema, we relied on the EyePACS dataset 

which it utilized for training does not include macular edema grades. 

We used nine datasets that included fundus images of the retina with black boundaries around it. To fit our deep 

CNN model's input size of 299 × 299 pixels, we cut off the black parts and resized the photos. By dividing the 

standard deviation found across all pixels in the image by the average pixel value and subtracting it from all 

training and testing photos, the images were normalized.  

 

 
Figure 7: depicts various fundus images from theEyePACS collection dataset 

 

Name No. of 

Images 

Resolution Uses 

MESSIDOR 1158 1440 x 960, 

2240 x 

1488, 2304 

x 1536 

Identification of irregular 

blood vessels 

MESSIDOR-

2 

1648 1440 x 960, 

2240 x 

1488, 2304 

x 1536 

Abnormal blood vessels 

detection 

E-Ophtha 381 2048 x 

1360 

MicroaneurysmsDetection 

DIARETDB0 125 1500 x 

1152 

Abnormal blood vessels 

detection 

DIARETDB1 79 1500 x 

1152 

Abnormal blood vessels 

detection 

STARE 380 605 x 700 Abnormal blood vessels 

detection 



 

Anusandhanvallari 

Vol 2024, No.1 

September 2024 

 ISSN 2229-3388 

 

 

Available online at https://psvmkendra.com                                   1574 

IDRID 546 4288 x 

2848 

Abnormal blood vessels 

detection 

UoA-DR 250 2124 x 

2056 

Abnormal blood vessels 

detection 

EyePACS 88,330 1440 x 960, 

2240 x 

1488, 2304 

x 1536, 

4288 x 

2848 

Diabetic Retinopathy 

grading Hard Exudates, 

Hemorrhages, 

Microaneurysms 

detection 

Table 1: Training and Testing datasets 

 

4. Experimental setup 
4.1 Training  

A CNN's parameters are often initialized with random values at the start of training, implying that they are far 

from ideal. Using a high learning rate in this early period can result in numerical instability. To solve this, we 

begin with a low learning rate and progressively increase it, following Goyal's warm-up procedure [46]. 

Specifically, we begin by linearly increasing we start by gradually increasing the learning rate from zero to its 

target value—a technique called "warm-up  

For the first B batches (about 10 epochs worth of data), we scale the learning rate linearly: if L is our target 

learning rate, then batch number e gets a rate of L × (e/B). where L represents the starting learning rate. After 

the warm-up period, the system automatically reduces the learning rate following a cosine curve, starting fast 

then slowing the decrease over time as shown in:  

 

𝐶𝑙 =
1

2
[1 + 𝐶𝑂𝑆 (

𝑒𝜋

𝑇
)]. L 

 

where T is The learning rate follows a cosine curve: slow initial decay, faster mid-training reduction, then 

gradual final tapering. This approach typically boosts accuracy by 1-3% in our tests. 

To summarize, our strategy comprises linearly raising the rate of learning from zero to the starting point during 

the warm-up phase, followed by a steady reduction via cosine decay. We used the Adam optimizer for training, 

setting the momentum to 0.9 and starting with a learning rate of 1 × 10⁻³ for all nine configurations during the 

warm-up phase of each layer during fine-tuning. The trials ran using for our experiments, we used 64-image 

batches across 100 training cycles - all coded up in Keras and TensorFlow on a system that has an NVIDIA 

Quadro P6000 GPU, an Intel Xeon 2.1 GHz 16-core CPU, and 32 GB of DDR2 RAM. 

4.2 Metrics  

Each image in the combined datasets received a binary classification 0 (Normal retina) or 1 (Signs of pathology) 

for diabetic retinopathy (DR). We assessed the studies using four essential metrics: sensitivity (SE), specificity 

(SP), area under the curve (AUC), and accuracy (ACC). Sensitivity (SE) and Specificity (SP) indicate how well 

the approach identifies DR and normal cases. Accuracy (ACC) refers to how accurately the model classifies 

conditions in a binary environment, indicating how well it correctly recognizes or excludes the presence of a 

condition. A typical performance metric in medical categorization is the AUC-ROC curve. The ROC curve 

compares TPR, FPR, and AUC. The AUC (Area under the Curve) score shows how well our model 

distinguishes diabetic retinopathy (DR) from healthy eyes. Think of it like this: 

Higher AUC (closer to 1) = The model cleanly separates DR and normal cases 
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Lower AUC (closer to 0.5) = The AUC quantifies class separation performance (DR vs normal), where values 

approaching 1 indicate ideal discrimination. The ROC curve plots sensitivity (TPR) against false positive rate 

(FPR), with. 

 follows: 

𝑇𝑃𝑅

𝑆𝐸
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐴𝐶𝐶 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

FPR = 1-SP 

In these equations: 

TP: Correct 'You have DR' diagnoses 

TN: Correct 'Your eyes are healthy' reports 

FP: Unnecessary referrals (healthy called sick) 

FN: Dangerous misses (sick called healthy)" 

5. Result and Discussion 
5.1 Performance of DR Detection  

In this section, we share how well our models performed, including key metrics like accuracy (ACC), area under 

the curve (AUC), sensitivity (SE), and specificity (SP). 

Model AUC ACC SE SP 

Inception ResNet-

v2-Wide Field 
0.987 0.969 0.948 0.961 

Inception ResNet-

v2-1 Fully Trained 

Layer 

0.962 0.933 0.944 0.889 

Inception ResNet-

v2-2 Fully Trained 

Layer 

0.978 0.952 0.976 0.981 

Inception ResNet-

v2-3 Fully Trained 

Layer 

0.988 0.974 0.979 0.974 

IncRes-v2-All 0.989 0.961 0.969 0.902 

Inception ResNet-

v2-Fine Tuned 

Chanel depth wise 

0.954 0.947 0.888 0.913 

Inception ResNet-

v2-Fine Tuned 

Class Distribution 

0.967 0.967 0.981 0.957 

Inception ResNet 

v2-Fine Tuned 

Enhanced Dataset 

0.964 0.984 0.978 0.933 
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Inception 

ResNetv2-Fune 

Tuned Sampled 

Dataset 

0.99 0.966 0.955 0.97 

Table 2: summarizes the test findings using the EyePACS dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notably, the IncRes-v2-FTCDW this model did better than the rest, especially in terms of AUC of 0.986 and an 

ACC of 0.978. IncRes-v2-FTCD, another high-performing produced a model with an AUC of 0.971. The 

IncRes-v2-FTED model also produced strong results, with an AUC of 0.964. In comparison, the AUCs for 

IncRes-v2-2FT and The scores for IncRes-v2-3FT were 0.914 and 0.908, respectively. Meanwhile, IncRes-v2-

WF model, which was not fine-tuned, had the lowest performance, with an AUC of 0.841, making it the least 

successful at classifying referable diabetic retinopathy (DR). 

 

 
Figure 8: Training with ACC and loss learning curves 
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Figure 9: Validation learning curves (a) ACC and (b) loss. 

 

Figures 8 and 9 demonstrate the learning curves for all nine combinations, including accuracy (ACC) and loss. 

These figures show that IncRes-v2-FTCDW and IncRes-v2-FTCD not only performed well, but also remained 

stable during both Unlike the other models, this one performed well during both training and validation. 

 
Figure 10: ROC curves for the nine configurations 

 

The ROC curves tell an interesting story—IncRes-v2-FTCDW comes out on top, with IncRes-v2-FTCD trailing 

just behind. Meanwhile, IncRes-v2-FTSD and IncRes-v2-FTED are practically neck and neck, with nearly 

identical curves with only a 0.003 variation in AUC values. Meanwhile, IncRes-v2-WF has the lowest ROC 

curve, showing a lack of fine-tuning. 

To fine-tune the highest-performing model, IncRes-v2-FTCDW, we tested multiple learning rates and dropout 
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levels to find the ideal settings.  

Learning rate Dropout Val 

ACC 

Test 

AUC 

0.0001 0.35 0.974 0.962 

0.0001 0.6 0.981 0.944 

0.0002 0.35 0.986 0.961 

0.0002 0.6 0.979 0.972 

0.0003 0.35 0.988 0.986 

0.0003 0.6 0.984 0.97 

Table 3: Learning rates and dropout values are used as performance metrics. 

 

 
 

From Table 3, we can see that using a learning rate of 0.0003 and a dropout rate of 0.25 gave the best results—

achieving an impressive AUC of 0.986 on the EyePACS test set and an accuracy (ACC) of 0.978 on the 

validation set/. As Table 3 shows, setting the learning rate to 0.0003 and dropout to 0.25 delivered the strongest 

performance, with an AUC of 0.986 on the EyePACS test set and 0.978 accuracy on the validation set. 

We tested IncRes-v2-FTCDW on eight additional datasets after determining it to be the best model. On the 

MESSIDOR dataset, the model's AUC was 0.963 and its ACC was 0.944. The performance on MESSIDOR-2 

was very impressive, with an AUC of 0.979 and an ACC of 0.962. The model continued to perform well on 

subsequent datasets, with AUC values of the model achieved strong AUC scores of 0.986 on DIARETDB0 and 

0.988 on DIARETDB1. Performance remained excellent across other datasets as well - 0.964 for STARE, 0.957 

for IDRID, 0.984 for E-ophtha, and an impressive 0.990 for UoA-DR. 

 

 

 
Figure 11: Receiver Operating Characteristic curves for datasets 
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As shown in Figure 11's ROC curves, UoA-DR delivered the highest performance (AUC 0.990), while IDRID 

showed the lowest (though still respectable) score at 0.957 

5.2 Explainability of DR Detection  

We employed Grad-CAM to study our deep learning model's decision-making process and discover the diabetic 

retinopathy (DR) symptoms that led to retinal image classification. This strategy is particularly effective because 

it requires no changes to the model architecture. Grad-CAM creates a localization map by making use of the 

gradient data that flows into the final convolutional layer. This map emphasizes the significance of every pixel 

in the input image and its role in the classification as a whole. To generate Grad-CAM visualizations, we start 

by computing how sensitive the model's prediction for a specific class is to changes in the final convolutional 

layer's activations (before applying the Softmax function). The gradient is averaged globally to calculate the 

neuron significance weight∝𝑐
𝑘) using the following equation: 

 

∝𝑐
𝑘 = 

1

𝑍

∑ 

𝑖

∑

𝑗

𝜕𝑦𝑐

𝜕𝛢𝑖 𝑗
𝑘  

 

in which Z is the overall pixel count of the feature map, Here, yᶜ captures how sensitive our class prediction is to 

small changes, and Aᵏ contains all the spatial features the network extracted in its last convolutional layer 

Following the activation maps, the ReLU is applied using a weighted combination. Role of activation, yields a 

coarse heatmap that concentrates on factors that positively influence the classification:  

Lc
Grad-CAM = ReLU ( 

∑

𝑘
∝𝑐

𝑘 𝛢𝑘) 

This heatmap helps us to see which areas of the retinal picture were most influential in the DR classification.  

 

 
Figure 12:Shows TP and TN classifications from the EyePACS Dataset. 

 

Figure 12 shows true positive (TP) and true negative (TN) classifications from the EyePACS dataset, with Grad-

CAM used to identify typical DR indications such as exudates (EX), hemorrhages (HM), and microaneurysms 

(MA) on retinal images. The MESSIDOR and MESSIDOR-2 datasets yielded similar results. Our algorithm 

effectively recognizes several symptoms of DR, particularly EX near the macula, which is consistent with prior 

research findings. Additional visualizations are available for the DIARETDB0 and DIARETDB1 datasets  
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Figure 13: Shows TP and TN classifications from the DIARETDB1 and DIARETDB1 Dataset 

 
Figure 14: Shows TP and TN classifications from the STARE Dataset 

 
Figure 15: Shows TP and TN classifications from the IDRID Dataset 
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Figure 16: Shows TP and TN classifications from the E-Ophtha Dataset 

 
Figure 17: Shows TP and TN classifications from the UoA-DR Dataset 

 

The heatmaps generated by Grad-CAM are concentrated on the important DR indicators, The model performs 

well at detecting key DR signs like EX (exudates), MA (microaneurysms), and HM (hemorrhages), showing 

that our deep learning approach can reliably spot diabetic retinopathy symptoms while also delivering strong 

classification results 

5.3 Comparison with Other Deep Networks  

We compared our findings with several current studies on the classification of diabetic retinopathy (DR). 

Because different research employ different criteria and datasets, direct performance comparisons might be 

difficult. However, Tables 5 and 6 summarize how our technique compares up against cutting-edge 

methodologies employing the popular EyePACS and MESSIDOR-2 datasets. 

 

 

Author 

AC

C 

AU

C SE SP 

Trainin

g 

images 

Sourc

e 

 

Ref 

Gulshan 

et al -- 981 

0.90

2 

0.97

1 138165 90% 

[24

] 

Voets et 

al -- 0.93 

0.84

8 

0.90

1 57246 100% 

[25

] 

Grinsve

n et al -- 0.99 

0.93

2 

0.80

5 6686 100% 

[26

] 

Rakhlin 

et al -- 

0.93

2 0.91 0.93 82760 100% 

[27

] 

Lin et al 

0.96

1 0.91 

0.74

2 

0.94

8 34000 100% 

[28

] 

Zeng et 

al -- 

0.93

9 0.94 

0.80

5 29200 100% 

[29

] 

Ours 

0.97

9 

0.98

6 

0.95

8 

0.97

1 71056 100% 

[7] 

Table 4: Performance Comparison using EyePacs 
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Author AC

C 

AU

C 

SE SP Ref 

Gulshan et al 
-- 

0.95

1 

0.94

9 

0.95

1 

[24

] 

Voets et al 
-- 0.9 0.8 0.86 

[25

] 

Rakhlin et al 
-- 0.96 0.98 0.61 

[27

] 

Pratt et al 0.79 -- 0.4 0.94 [7] 

Gargeya et al 
-- 0.93 0.92 0.89 

[30

] 

Ours 
0.96

2 

0.97

9 

0.96

7 

0.89

1 

[7] 

Table 5: Performance Comparison using MESSIDOR-2 

 
Overall, our approach outperforms numerous existing techniques on a variety of measures. The sole exception is 
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the work, which marginally outperforms us. However, it's worth noting that their research was based on a 

massive proprietary dataset containing over 120,000 photos, 91% of which are private and not publicly 

available. In contrast, we only use datasets that are publicly available. Despite this, we obtained the highest 

sensitivity (SE) on Our experiments leveraged the EyePACS dataset, the most extensive publicly available 

resource for this type of research This shows that our approach excels at appropriately identifying individuals 

with DR and recognizing true positives. 

 

Model AUC ACC SE SP Ref 

Gondal et al -- -- 0.97 -- [31] 

shan et al 0.923 -- -- 0.914 [32] 

quellec et al 0.964 -- -- -- [33] 

Ours 0.988 0.971 0.968 0.901 [7] 

Table 6: Performance Comparison using DIARETDB1 Dataset 

 

 

 
 

Table 7 compares the performance of various cutting-edge approaches on the DIARETDB1 dataset, with our 

suggested architecture achieving the highest AUC score. Furthermore, many of the comparison research 

discussed in Section 1 tested their models on a small number of datasets. For example, Gulshan et al. disclosed 

their findings on only two datasets (EyePACS and MESSIDOR-2), despite the fact that nonpublic photos 

yielded the greatest AUC. In contrast, our research presents a more comprehensive examination across nine 

different datasets, establishing a broader benchmark for evaluating DR detection strategies. 

 

5.4 Analysis of Misclassifications  

When we put our best model, IncRes-v2-FTCDW, to the test, we noticed it wasn't perfect—it tripped up on 

some images across all the datasets. The EyePACS test set had the most misclassifications (184), followed by 

MESSIDOR (67) and MESSIDOR-2 (20). The smaller datasets fared better, with only a handful of errors: 

DIARETDB0 (3), DIARETDB1 (4), E-ophtha (7), IDRID (12), STARE (17), and UoA-Dr (9). You can see the 

full breakdown of error rates in Table 8 



 

Anusandhanvallari 

Vol 2024, No.1 

September 2024 

 ISSN 2229-3388 

 

 

Available online at https://psvmkendra.com                                   1584 

Datasets Number 

of test 

images 

Error 

(%) 

EyePACS 8800 2.3 

MESSIDOR 1250 5.8 

MESSIDOR-2 1768 4.1 

DIARETDB0 140 1.8 

DIARETDB1 99 3.1 

E-ophtha 469 1.7 

IDRID 540 2.6 

STARE 497 5.2 

UoA-DR 240 5.5 

Table 7: Misclassification error rate 

 

A deeper look at these test sets reveals that some photographs are of poor quality, with high brightness, camera 

artifacts, blackness, blurriness, and low contrast. For example, in the EyePACS dataset, Rakhlin et al. found that 

25% of the photos were ungradable due to flaws such as being out of focus or overexposed. 

 
Figure 18: depicts ungradable images from the EyePACScollection dataset 

These difficulties illustrate the difficulty of appropriately categorizing diabetes retinopathy when working with 

poor-quality photos, retinopathy (DR) can occur. 
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Figure 19: depicts False Positive and False Negative images collections in various datasets: EyePACS, 

MESSIDOR-2; E-ophtha; DIARETDB0; DIARETDB1; IDRID; UoA-DR; The figure shows some cases where 

our model got it wrong—both false positives (misdiagnosing healthy images as DR) and false negatives 

(missing actual signs of DR). For instance, in Figure 19(a) (EyePACS dataset), artifacts, faded areas, and blurry 

details tricked the model into flagging harmless noise as hemorrhages. A comparable mistake happens in Figure 

19(d), where a reddish patch led to a false DR detection. Figures 19(g) and (m) (DIARETDB1) show similar 

errors: the model confused random noise or unusual coloration with exudates (EX), incorrectly labeling them as 

diseased.  

Figures 19(b) and 19(c) show FNs from EyePACS, however the images are very bright, making it difficult for 

the model to detect DR signals. Figures 19(e) and 19(f) from EyePACS, as well as Figure 19(l) from 

DIARETDB0, are too dark, making the DR indications difficult to see. Figure 19(j) of the MESSIDOR-2 

dataset shows poor contrast, making the DR indications practically invisible and resulting in a FN. Figures 19(i) 

from EyePACS and 19(k) from E-ophtha are blurry, making retinal details difficult to distinguish save for the 

optic disc and a few blood vessels, prompting the models to classify these images as normal. Figure 19(h) from 

EyePACS depicts another FP in which an underexposed, unfocused image caused misclassification. In Figure 

19(n) of IDRID, insufficient illumination caused the retina to seem to be bleeding, resulting in a FP. Finally, 

Figures 19(o) and 19(p) from UoA-DR are FPs in which inadequate illumination and blurriness caused the 

appearance of bleeding, making retinal features difficult to perceive.  

Finally, the majority of misclassifications might be attributable to the low image quality in the datasets. Despite 

these challenges, our suggested model outperforms in DR classification. 

 



 

Anusandhanvallari 

Vol 2024, No.1 

September 2024 

 ISSN 2229-3388 

 

 

Available online at https://psvmkendra.com                                   1586 

6. Conclusion 
In this paper, we introduce Self-Supervised Image Transformer, a unique Self-Supervised Learning system 

designed to acquire generalizable and transportable representations from fundus photos. Self-Supervised Image 

Transformer differentiates itself from other Self-Supervised Learning approaches by including saliency maps 

into its design. Using these saliency maps, we use contrastive learning to remove non-salient patches from the 

momentum encoder's input sequence. This encourages the encoder to focus on relevant locations, allowing the 

query encoder to concentrate on regions critical for Diabetic Retinopathy diagnosis. Furthermore, in order to 

preserve fine-grained information in the learned representations, the query encoder is trained to predict the 

saliency map of fundus images. Using methods including fine-tuning, linear assessment, and k-NN 

classification, we perform extensive experiments on a number of fundus image datasets to evaluate the quality 

of learned representations. According to our research, Self-Supervised Image Transformer consistently 

outperforms alternative Self-Supervised Learning techniques for DR grading. Furthermore, we demonstrate that, 

in contrast to traditional Self-Supervised Learning approaches, the self-supervised Vision Transformers in Self-

Supervised Image Transformer are capable of gathering a large amount of semantic information about DR 

diagnostic features. 
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