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ABSTRACT

Using unlabeled images, Self-Supervised Learning has evolved into a common method for learning image
representations. Still, its use in medical picture analysis is not very well studied. In this study, we present a self-
supervised Image Transformer that is led by saliency based on fundus pictures to grade Diabetic Retinopathy.
Our method especially uses saliency maps in Self-Supervised Learning to direct the pre-training process using
knowledge within a given domain. We particular suggest Two saliency-guided techniques for learning activities
inside Self-Supervised Image Transformer: (1) Saliency-guided contrastive learning: To reduce. Unnecessary
patches derived from momentum-updated key encoder input sequences, we utilize saliency maps of fundus
pictures within conjunction with momentum contrast. As a result, the encoder for queries is directed to learn
significant features from the prominent regions that the key encoder has focused on. (2) Saliency segmentation
prediction: The query encoder is motivated to preserve detailed information in the acquired representations by
being trained to predict saliency maps. Using four publicly accessible fundus imaging datasets, we do out
comprehensive investigations. The efficiency of the representations learned through self-supervised Image
Transformer is demonstrated by our results, which demonstrate that Self-Supervised Image Transformer
performs noticeably better than a number of cutting-edge Self-Supervised Learning techniques across all
datasets and evaluation circumstances.

KEYWORDS
Diabetic Retinopathy; Convolutional Neural Networks; Deep Learning; Self-Supervised Learning;
Convolutional Neural Networks; Self-Supervised Image Transformer.

1. Introduction

The primary etiology of working-age blindness individuals in cultivated nations [1] is a serious complication of
diabetes, diabetic retinopathy affects the eye's blood vessels and can ultimately cause irreversible vision damage
loss if treatment is delayed. Fundus pictures are useful in identifying this disorder because they show particular
biomarkers such as exudates, hemorrhages, microaneurysms, and retinal neovascularization [2]. But early
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symptoms of Diabetic Retinopathy are sometimes subtle and hard to see, and even for seasoned professionals,
screening is becoming more and more challenging as the number of diabetes patients rises. Automatic
techniques to help with Diabetic Retinopathy detection are therefore desperately needed, particularly in places
with little healthcare resources [3,45]. Convolutional Neural Networks which are extensively used in deep
learning, have made major advancements in Diabetic Retinopathy detection over the last decades Diabetic
Retinopathy grading is mechanized using this [4,41]. Diagnosing Diabetic Retinopathy can be challenging
because the condition is silent and has no early warning indicators, making early detection challenging [44].
Historically, the diagnosis has been made by skilled medical professional’s manually reviewing and assessing
Digital Fundus Photography photographs [5, 43]. Depending on the amount of patients that require evaluation
and the doctors' availability, this process may take several days. In addition, different doctors may get different
results, and a doctor's accuracy greatly depends on their experience. Additionally, the technology and
knowledge required may be inadequate in many areas with high Diabetic retinopathy is a widespread condition,
affecting millions globally. Notably, convolutional neural networks (CNNs) have recently achieved
breakthrough performance in medical imaging and other computer vision tasks

2. Literature Review

A. Deep Learning for DR Grading
The International Clinical Diabetic Retinopathy Scale divides the condition into four progressive stages: mild,
moderate, and severe non-proliferative DR (NPDR), followed by the most advanced stage, proliferative DR
(PDR). Clinicians use this classification system to assess disease progression and guide treatment decisions (0 is
normal). [6]. Fundus imaging can identify biomarkers associated with DR, such as Hemorrhage, Key signs like
exudates, microaneurysms, and retinal neovascularization can indicate diabetic retinopathy. To detect these
markers, researchers are now using supervised deep learning approaches [8,42] have been more popular in
recent years for Diabetic Retinopathy grading using fundus pictures. Because of their capacity to learn high-
level features successfully, Convolutional Neural Networks are frequently used as the feature extraction module
in these methods [9].
Recently, computer vision methods have become a go-to solution for medical image analysis, demonstrating
remarkable accuracy in image identification applications [10,11] found that Vision Transformers are
competitive, if not superior to, Convolutional Neural Networks in Diabetic Retinopathy grading, particularly for
extensive datasets. Notwithstanding their potential, the application of Vision Transformers in medical imaging
analysis remains restricted, owing to an absence of adequately annotated data and the fact that Vision
Transformers have yet to be completely investigated. In our study, we suggest a framework for self-supervised
learning for Vision Transformers to improve Diabetic Retinopathy grading by better using unannotated fundus
pictures.

B. Self-supervised Learning in Natural Images

Self-supervised learning has attained significant achievement using computer vision. [12]. A popular in self-
supervised learning, one common approach is to design a pretext task—an artificial challenge that helps the
model learn meaningful representations from unlabeled data The key idea behind self-supervised learning?
Create a pretext task that forces the model to learn useful features on its own that leverages the image's own
information as a supervisory signal [13]. This challenge contributes to the training of neural network - an Al
system modeled after the human brain - to automatically discover patterns Meaningful visual depictions. One of
the most prevalent instances of prejudice used Techniques for self-supervised learning has revolutionized
computer vision by allowing Al systems to learn from images without human annotations focuses on
discriminating each Image by optimizing the congruence of representations from several enlarged perspectives
of the identical image.

MoCo[14] and SimCLR[15] are at the forefront of instance discrimination techniques. MoCo, for example,
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compares utilizing the method uses embedded features from a trained encoder to build a dynamic representation
dictionary, which is continuously updated via a momentum encoder. In contrast, SImCLR compares images in
batches. MoCo-v3 improves MoCo's performance for self-supervised vision transformers[16]. Another famous
method is DINO[17], which employs self-distillation to train a Vision Transformers, where a student model
learns to predict the feature representations generated by a momentum-based

While these algorithms excel at natural picture categorization, some studies have noted their reliance on global
features, which may restrict their capacity to catch fine-grained details. To solve this, a new Self-supervised
learning paradigm called as masked image modeling has gained traction[18], notably among Vision
Transformers. Masked Autoencoder, for example, masks random regions of an analyze and develops a model to
rebuild it these concealed areas. Nevertheless, linear assessment and k-nearest neighbors categorization
demonstrate that such approaches are less effective in tasks requiring strong discriminative representation
learning. Our goal is to create a network that collects both Fundus images contain both global and discriminative
traits, as well as local and fine-grained data.

C. Self-supervised Learning in Medical Images

Annotating large-scale medical picture datasets is extremely expensive[19], which has prompted extensive study
into self-supervised learning approaches for medical imaging, with a focus on ophthalmic image analysis [20]
used OCT data to Linear evaluation with k-nearest neighbors classification to predict retinal thickness derived
from fundus examination. Similarly, [21]. Created a self-supervised learning approach for retinal disorder
diagnosis that multimodal data. In previous work, we proposed a lesion-based contrastive learning strategy in
which lesion patches are used provides input to help the network get additional discriminative characteristics for
DR grading [22]. Other research in medical imaging includes PCRL, which enhances representation learning
Reconstructing various settings to recover from contrastive loss; and DiRA[23], which integrates We’ve
developed a unified approach that combines three powerful learning techniques—discriminative, restorative,
and adversarial training—into one cohesive system. Our current work, the Saliency-guided Self-supervised
Image Transformer (or SaSIT for short distinguishes itself by leveraging prominence to guide Saliency-guided
self-supervised Image Transformer training. Our Saliency-guided Self-supervised Image Transformer (or
SaSIT) introduces two novel saliency-based learning objectives that enhance Vision Transformers' capabilities
model in learning representations enhanced with DR-related properties.

3. Dataset

3.1 MESSIDOR and MESSIDOR-2

The MESSIDOR dataset [34] comprises 1,158 images depicting the color of the retinal fundus collected from
three different ophthalmology departments. Images were captured with a camera mounted on a nonmydriatic
retinograph in the Under Identical Setting mode, and high resolution pixels were used. Figure 1 illustrates some
of these photos. The MESSIDOR-2 dataset [35] extends on this by includes 1,648 more retinal images taken
with a camera in identical situations. Table 1 lists pictures of varied resolutions from both databases.

Figure 1: depicts various fundus images from the MESSIDOR and MESSIDOR-2 collection datasets
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3.2 E-Ophtha

The collection of data provided in [36] contains 381 compressed retinal pictures, of which 148 reveal
microaneurysms and 233 are categorized as healthy. These photos were gathered from more than 15 evaluation
sites in South India. Unlike many other datasets, it does not have predetermined training and testing sets,
making its application more difficult. It is one of the most complex publicly available datasets, with a wide
range of image quality and a high pixel resolution. Figure 2 shows a selection of fundus photos from the E-

ophtha collection

Figure 2: depicts various fundus images from the E-ophtha collection datasets

3.3 DIARETDB0 and DIARETDBI1

The DIARETDBO dataset [37] comprises 125 chromatic fundus photographs, 25 of which are standard and 100
of which show evidence Common signs of diabetic retinopathy (DR) include hard exudates (EX), soft exudates,
microaneurysms (MA), and hemorrhages (HM and neovascularization. All photos have a resolution of pixels.
Meanwhile, the DIARETDBI dataset [38] consists of 79 retinal pictures captured using a digital fundus camera.
These photographs are taken from real-world circumstances, thus they are ideal for assessing the overall success
this set of images is commonly used for diagnostic purposes and is often known as 'calibration level 0 fundus
images. Figure 3 displays instances from the DIARETDBO and DIARETDBI1 databases

Figure 3: depicts various fundus images from the DIARETDBO0 and DIARETDBI collection datasets

3.4 STARE

The dataset consists of high-resolution retinal images captured using a fundus camera [39]. It contains 380
images covering 14 different eye conditions, including emboli, cilio-retinal artery occlusion, branch retinal vein
occlusion, central retinal vein occlusion (CRVO), hemi-CRVO, arteriosclerotic retinopathy, hypertensive
retinopathy, Coat's disease, macroaneurysm, as well as both background and proliferative diabetic retinopathy
(DR and PDR). Examples of these fundus images from the STARE dataset are shown in Figure 4.

ar

Figure 4: depicts various fundus images from the STARE collection datasets
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3.5IDRID

This dataset includes 546 photos depicting a variety of clinical situations associated with diabetic retinopathy.
All photos have a high pixel resolution and are oriented around the macula. Medical specialists thoroughly
reviewed and graded Each image was graded on a scale from 0 (normal) to 4, indicating the severity of diabetic
retinopathy (DR) Figure 5 depicts representative fundus photos from the IDRID collection.

Figure 5: depicts various fundus images from the IDRID collection dataset.

3.6 UoA-DR

The creation of the UoA-DR dataset by the University of Auckland as part of their endeavors to identify diabetic
retinopathy (DR) using an autonomous system. Three Indian medical facilitiecs—we collaborated with three
major eye care centers: Dr Agarwal’s Eye Hospital, L.V.Prasad Eye Institute, and Eye Care Hyderabad Super
Specialty Eye Hospital —cooperated to develop this dataset. Fundus cameras were used by the ophthalmologists
at these institutes to take retinal photographs of their patients. With the pixel resolution that this camera
provides, 250 excellent JPEG photographs are included in the collection. Three types of pictures are
distinguished: proliferative DR (PDR), nonproliferative DR, and healthy. Examples of fundus photos from the

UoA-DR dataset are shown in

Figure 6: depicts various fundus images from theUoA-DR collection dataset

3.7 EyePACS

This dataset contains over 88,330 high-resolution retinal images captured under diverse imaging conditions.
Each Participants provided two images: one for each eye (left and right) these photographs were shot with
varied camera types and sizes, which may explain why the left and right eye images appear differently. Figure 7
displays a selection of photos from the EyePACS dataset.

The dataset is imbalanced, with normal photos categorized as "0" accounting for the bulk, whereas images
exhibiting proliferative diabetic retinopathy (PDR) are uncommon. Figure 12 depicts an example of the fundus
images from the EyePACS dataset. Table 1 presents an overview of all datasets used. Notably, 15 fundus
pictures were eliminated from the analysis since there was no circular mask found.

We segmented the EyePACS dataset split into 79,497 training images and 8,833 test images, following the
methodology described in references [26,32] patients with diabetic retinopathy (DR) were classed as having a
DR stage of 2 to 4, which the dataset covered moderate, severe, and proliferative DR stages. We consolidated
images originally labeled 0 (normal') and 1 ('no detectable DR') into a unified 'normal' category (label 0) while
those labeled 2, 3, and 4 were classed as "DR" and relabeled as 1. We used several techniques to handle the
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uneven distribution of data we used a class-weight strategy that accounts for the asymmetry in error costs during
training of models with the EyePACS dataset.
In addition, we utilized the MESSIDOR datasets for detection purposes [46]. Existence of DR-related features
such as exudates (Ex), hemorrhages (HM), and microaneurysms (MA), using the approaches. It should be noted
that this study does not address the for detecting diabetic macular edema, we relied on the EyePACS dataset
which it utilized for training does not include macular edema grades.
We used nine datasets that included fundus images of the retina with black boundaries around it. To fit our deep
CNN model's input size of 299 x 299 pixels, we cut off the black parts and resized the photos. By dividing the
standard deviation found across all pixels in the image by the average pixel value and subtracting it from all
training and testing photos, the images were normalized.

Figure 7: depicts various fundus images from theEyePACS collection dataset

Name

MESSIDOR

MESSIDOR-
2

E-Ophtha
DIARETDBO
DIARETDBI1

STARE

No. of Resolution

Images
1158

1648

381

125

79

380

1440 x 960,
2240 X
1488, 2304
x 1536
1440 x 960,
2240 X
1488, 2304
x 1536
2048 X
1360

1500 X
1152

1500 X
1152

605 x 700

Uses

Identification of irregular
blood vessels

Abnormal blood vessels
detection

MicroaneurysmsDetection

Abnormal blood vessels
detection
Abnormal blood vessels
detection
Abnormal blood vessels
detection
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IDRID 546 4288 X Abnormal blood vessels
2848 detection

UoA-DR 250 2124 x Abnormal blood vessels
2056 detection

EyePACS 88,330 1440 x 960, Diabetic Retinopathy

2240 x grading Hard Exudates,
1488, 2304 Hemorrhages,

X 1536, Microaneurysms
4288 x detection
2848

Table 1: Training and Testing datasets

4. Experimental setup

4.1 Training

A CNN's parameters are often initialized with random values at the start of training, implying that they are far
from ideal. Using a high learning rate in this early period can result in numerical instability. To solve this, we
begin with a low learning rate and progressively increase it, following Goyal's warm-up procedure [46].
Specifically, we begin by linearly increasing we start by gradually increasing the learning rate from zero to its
target value—a technique called "warm-up

For the first B batches (about 10 epochs worth of data), we scale the learning rate linearly: if L is our target
learning rate, then batch number e gets a rate of L x (e/B). where L represents the starting learning rate. After
the warm-up period, the system automatically reduces the learning rate following a cosine curve, starting fast
then slowing the decrease over time as shown in:

cL=3[1+cos H].L

where T is The learning rate follows a cosine curve: slow initial decay, faster mid-training reduction, then
gradual final tapering. This approach typically boosts accuracy by 1-3% in our tests.

To summarize, our strategy comprises linearly raising the rate of learning from zero to the starting point during
the warm-up phase, followed by a steady reduction via cosine decay. We used the Adam optimizer for training,
setting the momentum to 0.9 and starting with a learning rate of 1 x 107 for all nine configurations during the
warm-up phase of each layer during fine-tuning. The trials ran using for our experiments, we used 64-image
batches across 100 training cycles - all coded up in Keras and TensorFlow on a system that has an NVIDIA
Quadro P6000 GPU, an Intel Xeon 2.1 GHz 16-core CPU, and 32 GB of DDR2 RAM.

4.2 Metrics

Each image in the combined datasets received a binary classification 0 (Normal retina) or 1 (Signs of pathology)
for diabetic retinopathy (DR). We assessed the studies using four essential metrics: sensitivity (SE), specificity
(SP), area under the curve (AUC), and accuracy (ACC). Sensitivity (SE) and Specificity (SP) indicate how well
the approach identifies DR and normal cases. Accuracy (ACC) refers to how accurately the model classifies
conditions in a binary environment, indicating how well it correctly recognizes or excludes the presence of a
condition. A typical performance metric in medical categorization is the AUC-ROC curve. The ROC curve
compares TPR, FPR, and AUC. The AUC (Area under the Curve) score shows how well our model
distinguishes diabetic retinopathy (DR) from healthy eyes. Think of it like this:

Higher AUC (closer to 1) = The model cleanly separates DR and normal cases
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Lower AUC (closer to 0.5) = The AUC quantifies class separation performance (DR vs normal), where values
approaching 1 indicate ideal discrimination. The ROC curve plots sensitivity (TPR) against false positive rate

(FPR), with.
follows:
TPR TP
SE ~ TP+FN
oo TP
TP + FN
ACC = i
TP + FN
FPR = 1-SP

In these equations:

TP: Correct 'You have DR' diagnoses

TN: Correct 'Your eyes are healthy' reports
FP: Unnecessary referrals (healthy called sick)
FN: Dangerous misses (sick called healthy)"

5. Result and Discussion
5.1 Performance of DR Detection

In this section, we share how well our models performed, including key metrics like accuracy (ACC), area under

the curve (AUC), sensitivity (SE), and specificity

(SP).

Model AUC

Inception ResNet-
v2-Wide Field
Inception ResNet-
v2-1 Fully Trained
Layer

Inception ResNet-
v2-2 Fully Trained
Layer

Inception ResNet-
v2-3 Fully Trained
Layer
IncRes-v2-All
Inception ResNet-
v2-Fine Tuned
Chanel depth wise
Inception ResNet-
v2-Fine Tuned
Class Distribution
Inception ResNet
v2-Fine Tuned
Enhanced Dataset

0.987

0.962

0.978

0.988

0.989

0.954

0.967

0.964

ACC

0.969

0.933

0.952

0.974

0.961

0.947

0.967

0.984

SE

0.948

0.944

0.976

0.979

0.969

0.888

0.981

0.978

SP

0.961

0.889

0.981

0.974

0.902

0.913

0.957

0.933
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Table 2: summarizes the test findings using the EyePACS dataset.
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Notably, the IncRes-v2-FTCDW this model did better than the rest, especially in terms of AUC of 0.986 and an
ACC of 0.978. IncRes-v2-FTCD, another high-performing produced a model with an AUC of 0.971. The
IncRes-v2-FTED model also produced strong results, with an AUC of 0.964. In comparison, the AUCs for
IncRes-v2-2FT and The scores for IncRes-v2-3FT were 0.914 and 0.908, respectively. Meanwhile, IncRes-v2-
WF model, which was not fine-tuned, had the lowest performance, with an AUC of 0.841, making it the least
successful at classifying referable diabetic retinopathy (DR).

o
®)

Figure 8: Training with ACC and loss learning curves
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Figure 9: Validation learning curves (a) ACC and (b) loss.

Figures 8 and 9 demonstrate the learning curves for all nine combinations, including accuracy (ACC) and loss.
These figures show that IncRes-v2-FTCDW and IncRes-v2-FTCD not only performed well, but also remained

stable during both Unlike the other models, this one performed well during both training and validation.
12

Sensitivity
= o o
= @ =

s
[

0
o 01 0.2 03 04 05 08 o7 0.8 0.8 1
1-specificity

Figure 10: ROC curves for the nine configurations

The ROC curves tell an interesting story—IncRes-v2-FTCDW comes out on top, with IncRes-v2-FTCD trailing
just behind. Meanwhile, IncRes-v2-FTSD and IncRes-v2-FTED are practically neck and neck, with nearly
identical curves with only a 0.003 variation in AUC values. Meanwhile, IncRes-v2-WF has the lowest ROC
curve, showing a lack of fine-tuning.

To fine-tune the highest-performing model, IncRes-v2-FTCDW, we tested multiple learning rates and dropout
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levels to find the ideal settings.

Learning rate Dropout Val Test
ACC AUC

0.0001 035 0974 0.962

0.0001 0.6 0981 0944

0.0002 035 0986 0.961

0.0002 0.6 0979 0972

0.0003 035 0.988 0.986

0.0003 0.6 0984 0.97

Table 3: Learning rates and dropout values are used as performance metrics.

Tazle 3 .aar'ing rates and dr.‘-pc.t Yalues ara
usad as perf:-r mance metrics

12
1
1 2 3 4 5 &

M Learning rate W Dropout Val ACC I Test AUC

From Table 3, we can see that using a learning rate of 0.0003 and a dropout rate of 0.25 gave the best results—
achieving an impressive AUC of 0.986 on the EyePACS test set and an accuracy (ACC) of 0.978 on the
validation set/. As Table 3 shows, setting the learning rate to 0.0003 and dropout to 0.25 delivered the strongest
performance, with an AUC of 0.986 on the EyePACS test set and 0.978 accuracy on the validation set.

We tested IncRes-v2-FTCDW on eight additional datasets after determining it to be the best model. On the
MESSIDOR dataset, the model's AUC was 0.963 and its ACC was 0.944. The performance on MESSIDOR-2
was very impressive, with an AUC of 0.979 and an ACC of 0.962. The model continued to perform well on
subsequent datasets, with AUC values of the model achieved strong AUC scores of 0.986 on DIARETDBO and
0.988 on DIARETDBI1. Performance remained excellent across other datasets as well - 0.964 for STARE, 0.957
for IDRID, 0.984 for E-ophtha, and an impressive 0.990 for UoA-DR.

Sensitivity

- EyePACS
o E-optha
- TARE
Uea-DR
-DRID
o DiaratDBO
= DiaratD81
—ESSIDOR

- MESSIDOR2

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.8 1

1-specificity

Figure 11: Receiver Operating Characteristic curves for datasets
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As shown in Figure 11's ROC curves, UoA-DR delivered the highest performance (AUC 0.990), while IDRID
showed the lowest (though still respectable) score at 0.957

5.2 Explainability of DR Detection

We employed Grad-CAM to study our deep learning model's decision-making process and discover the diabetic
retinopathy (DR) symptoms that led to retinal image classification. This strategy is particularly effective because
it requires no changes to the model architecture. Grad-CAM creates a localization map by making use of the
gradient data that flows into the final convolutional layer. This map emphasizes the significance of every pixel
in the input image and its role in the classification as a whole. To generate Grad-CAM visualizations, we start
by computing how sensitive the model's prediction for a specific class is to changes in the final convolutional
layer's activations (before applying the Softmax function). The gradient is averaged globally to calculate the
neuron significance weightocX) using the following equation:

in which Z is the overall pixel count of the feature map, Here, y© captures how sensitive our class prediction is to
small changes, and A* contains all the spatial features the network extracted in its last convolutional layer
Following the activation maps, the ReLU is applied using a weighted combination. Role of activation, yields a
coarse heatmap that concentrates on factors that positively influence the classification:

LCGrad—CAM =ReLU ( z OC’C{ Ak)
k

This heatmap helps us to see which areas of the retinal picture were most influential in the DR classification.

(@ @
Figure 12:Shows TP and TN classifications from the EyePACS Dataset.

Figure 12 shows true positive (TP) and true negative (TN) classifications from the EyePACS dataset, with Grad-
CAM used to identify typical DR indications such as exudates (EX), hemorrhages (HM), and microaneurysms
(MA) on retinal images. The MESSIDOR and MESSIDOR-2 datasets yielded similar results. Our algorithm
effectively recognizes several symptoms of DR, particularly EX near the macula, which is consistent with prior
research findings. Additional visualizations are available for the DIARETDBO0 and DIARETDBI datasets
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(d)

Figure 13: Shows TP and TN class1ﬁcat1ons from the DIARETDBI and DIARETDBI1 Dataset

(b) () (d)
Figure 14 Shows TP and TN classifications from the STARE Dataset

(d)

Figure 15: Shows TP and TN classifications from the IDRID Dataset

(a)

(b)

e
&

.
(o)
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Figure 16: Shows TP and TN classifications from the E-Ophtha Dataset

(a)

Figure 17: Shows TP and TN classifications from the UoA-DR Dataset

(b)

(c)

The heatmaps generated by Grad-CAM are concentrated on the important DR indicators, The model performs
well at detecting key DR signs like EX (exudates), MA (microaneurysms), and HM (hemorrhages), showing

that our deep learning approach can reliably spot diabetic retinopathy symptoms while also delivering strong

classification results

5.3 Comparison with Other Deep Networks
We compared our findings with several current studies on the classification of diabetic retinopathy (DR).

Because different research employ different criteria and datasets, direct performance comparisons might be
difficult. However, Tables 5 and 6 summarize how our technique compares up against cutting-edge
methodologies employing the popular EyePACS and MESSIDOR-2 datasets.

Author
Gulshan
etal
Voets et
al
Grinsve
netal
Rakhlin
et al

Lin et al
Zeng et

al

Ours

AC AU
cC cC
—~ 981
~ 093
— 099
0.93
~ 2
0.96
1 0091
0.93
- 9
0.97 0.98
9 6

SE
0.90

0.84

0.93

0.91
0.74

0.94
0.95
8

SP
0.97
1
0.90
1
0.80
5

0.93
0.94
8
0.80
5
0.97
1

Trainin

g

images
138165
57246

6686

82760
34000

29200

71056

Sourc
e

90%

100%

100%

100%

100%

100%

100%

Table 4: Performance Comparison using EyePacs
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Table 5: Performance Comparison using MESSIDOR-2
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Overall, our approach outperforms numerous existing techniques on a variety of measures. The sole exception is
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the work, which marginally outperforms us. However, it's worth noting that their research was based on a
massive proprietary dataset containing over 120,000 photos, 91% of which are private and not publicly
available. In contrast, we only use datasets that are publicly available. Despite this, we obtained the highest
sensitivity (SE) on Our experiments leveraged the EyePACS dataset, the most extensive publicly available
resource for this type of research This shows that our approach excels at appropriately identifying individuals
with DR and recognizing true positives.

Model AUC ACC SE SP Ref
Gondal et al -- -- 0.97 -- [31]
shan et al 0.923 -- -- 0914 [32]
quellec et al 0.964 -- -- -- [33]
Ours 0.988 0.971 0.968 0.901 [7]

Table 6: Performance Comparison using DIARETDBI1 Dataset

Table &:Performance comparison using DIARETDEL
dataset
B Gordalerzl Mshaneta guellec ot 3l B Curs

| | I I I
AU 5E 5P

Table 7 compares the performance of various cutting-edge approaches on the DIARETDBI dataset, with our
suggested architecture achieving the highest AUC score. Furthermore, many of the comparison research
discussed in Section 1 tested their models on a small number of datasets. For example, Gulshan et al. disclosed
their findings on only two datasets (EyePACS and MESSIDOR-2), despite the fact that nonpublic photos
yielded the greatest AUC. In contrast, our research presents a more comprehensive examination across nine
different datasets, establishing a broader benchmark for evaluating DR detection strategies.

ACC

5.4 Analysis of Misclassifications

When we put our best model, IncRes-v2-FTCDW, to the test, we noticed it wasn't perfect—it tripped up on
some images across all the datasets. The EyePACS test set had the most misclassifications (184), followed by
MESSIDOR (67) and MESSIDOR-2 (20). The smaller datasets fared better, with only a handful of errors:
DIARETDBO (3), DIARETDBI (4), E-ophtha (7), IDRID (12), STARE (17), and UoA-Dr (9). You can see the
full breakdown of error rates in Table 8
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a

Datasets Number Error
of test (%)
images

EyePACS 8800 2.3

MESSIDOR 1250 5.8

MESSIDOR-2 1768 4.1

DIARETDBO 140 1.8

DIARETDBI 99 3.1

E-ophtha 469 1.7

IDRID 540 2.6

STARE 497 5.2

UoA-DR 240 5.5

Table 7: Misclassification error rate

Table 7: Misclassification error rate
10000
030
BOa0
7000
S0a0
5000
aApan
3000
2000

A
ﬂ ]
L]

B Humber of tessimages @ Error (%)

A deeper look at these test sets reveals that some photographs are of poor quality, with high brightness, camera
artifacts, blackness, blurriness, and low contrast. For example, in the EyePACS dataset, Rakhlin et al. found that
25% of the photos were ungradable due to flaws such as being out of focus or overexposed.

Figure 18: depicts ungradable images from the EyePACScollection dataset
These difficulties illustrate the difficulty of appropriately categorizing diabetes retinopathy when working with
poor-quality photos, retinopathy (DR) can occur.
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Figure 19: depicts False Positive and False Negative images collections in various datasets: EyePACS,
MESSIDOR-2; E-ophtha; DIARETDBO0; DIARETDBI1; IDRID; UoA-DR; The figure shows some cases where

our model got it wrong—both false positives (misdiagnosing healthy images as DR) and false negatives
(missing actual signs of DR). For instance, in Figure 19(a) (EyePACS dataset), artifacts, faded areas, and blurry

(m) (n)

P

details tricked the model into flagging harmless noise as hemorrhages. A comparable mistake happens in Figure
19(d), where a reddish patch led to a false DR detection. Figures 19(g) and (m) (DIARETDBI1) show similar
errors: the model confused random noise or unusual coloration with exudates (EX), incorrectly labeling them as
diseased.

Figures 19(b) and 19(c) show FNs from EyePACS, however the images are very bright, making it difficult for
the model to detect DR signals. Figures 19(e) and 19(f) from EyePACS, as well as Figure 19(1) from
DIARETDBO, are too dark, making the DR indications difficult to see. Figure 19(j) of the MESSIDOR-2
dataset shows poor contrast, making the DR indications practically invisible and resulting in a FN. Figures 19(i)
from EyePACS and 19(k) from E-ophtha are blurry, making retinal details difficult to distinguish save for the
optic disc and a few blood vessels, prompting the models to classify these images as normal. Figure 19(h) from
EyePACS depicts another FP in which an underexposed, unfocused image caused misclassification. In Figure
19(n) of IDRID, insufficient illumination caused the retina to seem to be bleeding, resulting in a FP. Finally,
Figures 19(o) and 19(p) from UoA-DR are FPs in which inadequate illumination and blurriness caused the
appearance of bleeding, making retinal features difficult to perceive.

Finally, the majority of misclassifications might be attributable to the low image quality in the datasets. Despite
these challenges, our suggested model outperforms in DR classification.
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6. Conclusion

In this paper, we introduce Self-Supervised Image Transformer, a unique Self-Supervised Learning system
designed to acquire generalizable and transportable representations from fundus photos. Self-Supervised Image
Transformer differentiates itself from other Self-Supervised Learning approaches by including saliency maps
into its design. Using these saliency maps, we use contrastive learning to remove non-salient patches from the
momentum encoder's input sequence. This encourages the encoder to focus on relevant locations, allowing the
query encoder to concentrate on regions critical for Diabetic Retinopathy diagnosis. Furthermore, in order to
preserve fine-grained information in the learned representations, the query encoder is trained to predict the
saliency map of fundus images. Using methods including fine-tuning, linear assessment, and k-NN
classification, we perform extensive experiments on a number of fundus image datasets to evaluate the quality
of learned representations. According to our research, Self-Supervised Image Transformer consistently
outperforms alternative Self-Supervised Learning techniques for DR grading. Furthermore, we demonstrate that,
in contrast to traditional Self-Supervised Learning approaches, the self-supervised Vision Transformers in Self-
Supervised Image Transformer are capable of gathering a large amount of semantic information about DR
diagnostic features.
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